MATHEMATICAL TRIPOS Part III

Monday, 31 May, 2010 1:30 pm to 4:30 pm

PAPER 43

SYMMETRY AND PARTICLE PHYSICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

You may use the property of Pauli matrices, $\sigma_i \sigma_j = \delta_{ij} I + i \epsilon_{ijk} \sigma_k$.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

Define the adjoint representation of a Lie algebra of dimension d(G) with basis generators $\{T_a\}$ satisfying $[T_a, T_b] = i f_{abc} T_c$. Write down the expression for the generators in the adjoint representation.

Let t_a^R be a matrix representation of the generators of the algebra with dimension d(R). Suppose the t_a^R 's are normalised so that $\operatorname{tr}(t_a^R t_b^R) = C(R) \,\delta_{ab}$. Prove that

$$f_{abc} = -\frac{i}{C(R)} \operatorname{tr}([t_a^R, t_b^R] t_c^R)$$

Given that $t_a^R t_a^R = C_2(R) I$, where $C_2(R)$ is the quadratic Casimir in the representation R, and I is the $d(R) \times d(R)$ unit matrix, show that

$$C(R) = \frac{d(R) C_2(R)}{d(G)}.$$

Write the generators of the product of representations, $t_a^{R_1 \otimes R_2}$, in terms of the generators of $t_a^{R_1}$ and $t_a^{R_2}$. Given this product, decompose into the sum of generators of irreducible representations,

$$t_a^{R_1\otimes R_2} = \oplus_i t_a^{R_i},$$

show that

$$(C_2(R_1) + C_2(R_2)) d(R_1) d(R_2) = \sum_i C_2(R_i) d(R_i) d(R_i)$$

Now consider the group G = SU(N). Using tensor notation, or otherwise, show how the representation, $\mathbf{N} \otimes \overline{\mathbf{N}}$ decomposes into the sum of irreducible representations, where \mathbf{N} denotes the fundamental representation and $\overline{\mathbf{N}}$ the anti-fundamental representation.

Use the above equations to deduce the value of the quadratic Casimir in the adjoint representation, $C_2(Ad(SU(N)))$, by considering the special case of $R_1 = \mathbf{N}$ and $R_2 = \bar{\mathbf{N}}$ and making the conventional choice, C(N) = 1/2.

CAMBRIDGE

 $\mathbf{2}$

What is a representation of a Lie algebra and how is it related to a unitary representation of a group?

The angular momentum algebra is expressed in terms of the relations

$$[J_3, J_{\pm}] = \pm J_{\pm}, \qquad [J_+, J_-] = 2J_3, \qquad [J_{\pm}, J_{\pm}] = 0.$$

A basis of states $\{|m\rangle\}$ are eigenstates of J_3 satisfying $J_3 |m\rangle = m |m\rangle$. What is meant by a 'highest-weight state' $|m_{max}\rangle$? Prove that states of the form $(J_-)^{\ell}|m_{max}\rangle$ form a finite-dimensional space if m_{max} satisfies conditions that should be stated. Show that this allows for integer or half-integer spins.

What is the spin- $\frac{1}{2}$ representation of J_{\pm} , J_3 ?

Explain how a three-dimensional rotation, $R(\theta, \mathbf{n})$, by an angle θ around an axis specified by the unit vector \mathbf{n} is described by the group SU(2). Write down the unitary operator U(R) that generates such rotations acting on basis states. Hence, explain how unitary spin-*j* representations, $D_{mm'}^{(j)}(R)$, may be defined in terms of representations of the angular momentum algebra.

Consider a rotation parameterised in the form

$$R = R(\phi, \mathbf{n_3}) R(\theta, \mathbf{n_2}) R(\psi, \mathbf{n_3}),$$

where $\mathbf{n_2}$, $\mathbf{n_3}$ are unit vectors along the 2, 3 axes and ϕ , ψ , θ are the Euler angles. Write down U(R) for this form of R and hence determine the form of $D_{mm'}^{(j)}(R)$. Show explicitly that $D_{mm'}^{(\frac{1}{2})}(R)$ changes sign under a rotation $\theta = 2\pi$.

Comment on the relation between the groups SU(2) and SO(3).

UNIVERSITY OF

3

How is a general SU(3) tensor, $T^{\alpha_1 \dots \alpha_k}_{\beta_1 \dots \beta_l}$ $(\alpha_i, \beta_j \in \{1, 2, 3\})$, defined?

How can it be decomposed into a sum of irreducible representations?

Determine the number of states in the highest dimension irreducible representation obtained from this general tensor.

Quarks are spin- $\frac{1}{2}$ particles described by fermionic (anticommuting) fields that transform in the fundamental representation, denoted **3**, of flavour SU(3) (when the light quarks are taken to have equal masses and the heavy quarks are ignored), as well as the **3** of colour SU(3). There are three quarks in a baryon. Given that baryons are colour singlets (colour 'confinement'), deduce that baryon states in which the quarks have no orbital angular momentum form either an **8** or a **10** of flavour SU(3), but cannot form a singlet state. What are spins of the states in these multiplets.

Antiquarks are also spin- $\frac{1}{2}$ particles that transform in the anti-fundamental representation (the $\bar{\mathbf{3}}$) of both the colour and flavour SU(3) groups. Determine the quantum numbers of the possible SU(3) flavour meson multiplets (colour-singlet states made of one quark and one antiquark).

UNIVERSITY OF

 $\mathbf{4}$

A general complex 2×2 matrix can be written as

$$A(\mathbf{u}) = u_0 I + i u_i \sigma_i \,,$$

5

where u_0 and u_i (i = 1, 2, 3) are arbitrary complex numbers, σ_i are the Pauli matrices and I is the two-dimensional unit matrix. What conditions need to be satisfied by (u_0, u_i) for A to be a SU(2) matrix? Show that u_0 may be expressed in terms of $\mathbf{u} = (u_1, u_2, u_3)$ and motivate the statement that the group manifold of SU(2) is S^3 .

Use the group property, $A(\mathbf{w}) = A(\mathbf{u}) A(\mathbf{v})$, to show that the action of an infinitesimal transformation, $A(\mathbf{v}) = I + iv_i \sigma_i$, generates an infinitesimal shift in \mathbf{u} given by

$$du_i = v_j \,\mu_{ji}(\mathbf{u}) \,,$$

where $\mu_{ji}(\mathbf{u}) = u_0 \,\delta_{ij} + u_k \,\epsilon_{jki}$.

Show that the action of the left-invariant vector fields,

$$T_j(\mathbf{u}) \,=\, i\mu_{ji}(\mathbf{u})\,rac{\partial}{\partial u_i}\,,$$

on the matrix A is given by $T_j A(\mathbf{u}) = -A(\mathbf{u}) \sigma_j$, and hence that T_i are generators of the algebra,

$$[T_i, T_j] = -2i \epsilon_{ijk} T_k.$$

The expression $\int d\rho(\mathbf{u}) f(A(\mathbf{u}))$ denotes the integral of a function $f(A(\mathbf{u}))$ over the SU(2) group manifold, where $d\rho(\mathbf{u})$ is the group invariant measure. Show that

$$d\rho(\mathbf{u}) = \frac{1}{|u_0|} d^3 u \,,$$

and hence show that SU(2) is a compact group.

[You may assume that $T_i(\mathbf{u})$ is a left-invariant vector field on the group manifold.]

END OF PAPER

Part III, Paper 43