MATHEMATICAL TRIPOS Part III

Thursday, 3 June, 2010 1:30 pm to 4:30 pm

PAPER 4

TOPICS IN GROUP THEORY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

2

(i) Define what it means for a group to be *nilpotent*.

Prove that a finite group is nilpotent if and only if is is the direct product of its Sylow subgroups.

(ii) For a general finite group G, give two definitions of the Frattini subgroup $\Phi(G)$, one in terms of maximal subgroups of G and the other in terms of generating properties, and show that the two definitions are equivalent. Prove that $\Phi(G)$ is a characteristic nilpotent subgroup of G. If G is a finite p-group, show that $\Phi(G) = G' G^p$, where G' is the derived subgroup of G and $G^p = \langle g^p | g \in G \rangle$.

(iii) A generating set S for the group G is a minimal generating set if no proper subset of S generates G. Show that any two minimal generating sets of the finite p-group G have the same size (Burnside Basis Theorem).

(iv) Show that the symmetric group S_n is generated by an *n*-cycle and an (n-1)-cycle whose product is a transposition.

Show finally that S_n has a generating set consisting of n-1 transpositions, but that no set of n-2 transpositions can generate S_n .

$\mathbf{2}$

(i) Prove that a primitive permutation group of degree n containing a 3-cycle contains the alternating group A_n .

For each prime p > 3, give an example of a primitive group G of degree n = p + 1 with p dividing |G| but G not containing A_n .

Give an example of an odd prime p and a primitive group G of degree n = p + 2 with p dividing |G| but G not containing A_n . [Note that such a G is 3-transitive.]

(ii) Let T be a group with trivial centre, let $G = T \times T$ and let G act on T by

$$(t_1, t_2) : t \mapsto t_1^{-1} t t_2.$$

Show that G is faithful and transitive in this action, and that G is primitive on T if and only if T is non-abelian simple.

Give an example of a prime p and a primitive permutation group of degree p+1 of order not divisible by p.

CAMBRIDGE

3

(i) Show that a maximal subgroup M of a non-abelian simple group G must be the normaliser in G of a characteristically simple group. [*Hint: Consider a minimal normal subgroup of* M.]

Show that A_5 has three conjugacy classes of maximal subgroups, and that they have orders 6, 10 and 12.

Show that $GL_3(2)$ has three conjugacy classes of maximal subgroups, one of order 21 and two of order 24.

(ii) Decribe the Fano projective plane $PG_2(2)$ with 7 points and 7 lines. Interpret the maximal subgroups of $GL_3(2)$ of order 24 in this context, distinguishing the two classes.

Show that if A, B are subgroups of order 24 in different classes, then $A \cap B$ has order 6 or 8, and both possibilities can occur.

Let \overline{G} be the group of order 336 obtained by extending $GL_3(2)$ by the outer automorphism τ which takes any matrix to its inverse transpose. Show that \overline{G} has three conjugacy classes of maximal subgroups (other than $GL_3(2)$), of orders 12, 16 and 42. [Note that τ swaps the two classes in G of subgroups of order 24.]

UNIVERSITY OF

 $\mathbf{4}$

(i) Define the linear groups $GL_n(q)$ and $SL_n(q)$ over the field of q elements, and obtain their orders.

Sketch a proof that the projective group $PSL_n(q)$ is simple for n > 1, except when n = 2 and $q \leq 3$.

(ii) Indicate the changes needed in (i) when dealing with the symplectic groups $Sp_{2m}(q)$.

(iii) Consider the action of $GL_n(q)$ on the set X_k of k-dimensional subspaces of $V_n(q)$, with $1 \leq k \leq n/2$. Describe the stabiliser P_k of an element of X_k .

What is the rank of $GL_n(q)$ on X_k ?

(iv) The graph Γ_k has as its vertices the elements of X_k , with two vertices A, B joined by an edge if $\dim(A \cap B) = k - 1$. Show that the distance d in Γ_k satisfies

$$d(A,B) = k - \dim(A \cap B).$$

Deduce that $G = GL_n(q)$ is distance-transitive on Γ_k : if $d(A_1, A_2) = d(B_1, B_2)$, then $A_1 g = B_1$ and $A_2 g = B_2$ for some $g \in G$.

$\mathbf{5}$

Write an essay on finite 2-transitive groups. Include many examples.

END OF PAPER