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1 Consider the optimization problem

Minimize f(x)

subject to h(x) = b

over x ∈ X ,

where X ⊂ R
n and b ∈ R

m. Define the Lagrangian function for this problem and then
state and prove the Lagrangian Sufficiency Theorem. Define the function φ by

φ(b) = inf
x∈X

{f(x) : h(x) = b} .

Define the Strong Lagrangian property and show that the following are equivalent:

(a) there exists a non-vertical supporting hyperplane to φ at b;

(b) the problem is Strong Lagrangian.

Minimize f =
∑

vi x
−1

i
in x > 0 subject to

∑
ai xi 6 b where ai, vi > 0 for all

i and b > 0 . [In this example f is the variance of an estimate derived from a stratified
sample survey subject to a cost constraint: xi is the size of the sample for the ith stratum,
the ai and vi are measures of sampling cost and of variability for this stratum.]

Check that the change in the minimal variance f for a small change δb in available
resources is λδb where λ is the Lagrange multiplier.
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(a) A Company wishes to maximize its profit by solving the optimization problem

Maximize 3x1 + 4x2

subject to x1 + 2x2 6 6
2x1 + x2 6 6

over x1 > 0 , x2 > 0 .

Use the simplex algorithm in tableau form to solve this linear problem.

(b) Subsequently the Company realises it has forgotten to include an additional
constraint

4x1 + 4x2 6 15 (1)

Use the dual simplex algorithm on the simplex tableau derived from part (a) to solve the
linear program

Maximize 3x1 + 4x2

subject to x1 + 2x2 6 6
2x1 + x2 6 6
4x1 + 4x2 6 15

over x1 > 0 , x2 > 0 .

(c) Later the Company forms an agreement to sell slack in the constraint (1).
Justifying any alteration made, alter the simplex tableau derived from part (b) and use
the simplex algorithm to solve linear program

Maximize 3x1 + 4x2 + y

subject to x1 + 2x2 6 6
2x1 + x2 6 6
4x1 + 4x2 + y = 15

over x1 > 0 , x2 > 0 , y > 0 .
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(a) State and prove the Max-Flow Min-Cut Theorem.

(b) Use the Ford-Fulkerson Algorithm to calculate a maximum flow between a source
at node 1 and a destination at node 8 in the following network.

Here the number by each arc represents the capacity of that arc. What is the min-cut of
this network?

(c) Starting from the given feasible solution, minimize the cost of flows in the
transportation problem given by the following tableau.

[Note: In this tableau the circled numbers indicate an initial feasible set of non-zero flows,
the numbers in the squares are the costs, the numbers to the right of the tableau are
supplies and the numbers below are demands.]
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Consider the Boolean formula with N clauses

(x11 ∨ x12 ∨ . . . ∨ x1M1
) ∧ (x21 ∨ x22 ∨ . . . ∨ x2M2

) ∧ . . . ∧ (xN1 ∨ . . . V xNMN
) (1)

where xij ∈ {X1, . . . , XK} ∪ {X̄1, . . . , X̄K} . Here ∧ means “AND” and ∨ means “OR”
and X̄ means “NOT X”.

The SAT problem considers the assignment of variables, Xi ∈ {true, false} ,
i = 1, 2, . . . , K such that (1) is true.

The MAX-SAT problem considers the assignment of variables such that the maxi-
mum number of clauses in (1) are true.

Express the SAT problem as an integer linear program.

Express the MAX-SAT problem as an integer linear program.

Consider the following approximation algorithm for MAX-SAT.

Greedy : Pick the variable z ∈ {X1, . . . , XK} ∪ {X̄1, . . . , X̄K} that occurs in the
largest number of clauses in (1). Set z true and z̄ false. This reduces formula (1) to an
expression on K − 1 variables. Repeat until no variables remain.

Show that Greedy is a 1

2
-approximation of MAX-SAT.

[Recall: Algorithm H with solution αH is an ǫ-approximation to a maximization
problem with optimal solution α∗ if for all problem instances,

αH > (1 − ǫ)α∗. ]
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For a coalitional game, explain what is meant by the characteristic function, an
imputation and the core.

(a) A group of n miners have discovered large and equal sized lumps of gold. Two
miners can carry one lump, so that the payoff of a coalition S is

v(S) =

{

|S|/2 if |S| is even

(|S| − 1)/2 if |S| is odd .

Determine the core in the cases where n is even and where n is odd.

Determine the core if it require three miners to carry one lump.

(b) A pair of shoes consists of a left shoe and a right shoe, and can be sold for £10.
Consider a coalitional game with a + b players: a of the players have one left shoe each,
and b of the players have one right shoe each. Determine the core for each pair of positive
integers (a, b).
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Let X be a convex set of strategies. Recall that a strategy x∗ ∈ X is an evolutionary
stable strategy (ESS) if for every y ∈ X, y 6= x∗ then

e(x∗, x̄) > e(y, x̄)

where x̄ = (1− ǫ)x∗ + ǫy for sufficiently small ǫ > 0 . Briefly discuss the interpretation of
e(. , .), x∗ and y in this definition.

Show that a strategy x∗ is an ESS if and only if for every y ∈ X, y 6= x∗

e(x∗, x∗) > e(y, x∗)

and if e(x∗, x∗) = e(y, x∗) then
e(x∗, y) > e(y, y) .

Suppose that a strategy x ∈ X is a mixture (p, 1 − p) of the two pure strategies
“Hawk” = (1, 0) and “Dove” = (0, 1) and that for the pure strategies the pay off matrix is

(

Hawk Dove

Hawk 1

2
(V − D) V

Dove 0 1

2
V

)

Find an ESS when

(i) V > D ,

(ii) V = D ,

(iii) V < D ,

justifying your answer in each case.

END OF PAPER
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