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1 Time Series

Define an autoregressive and moving average time series process of order p and q,
i.e., ARMA(p, q). Now define the autoregressive and moving average operators, and use
these to write your ARMA process in a concise form. What conditions must hold in order
for this process to be causal and invertible?

Briefly describe how the sample autocorrelation function (ACF) and partial auto-
correlation function (PACF) can be used to obtain a good guess of appropriate p and q

given a particular time series data set.

Consider the following process

xt = 0.5xt−1 + wt − 1.4wt−1 + 0.45wt−2 ,

where wt is IID white noise with variance σ
2
w
. Argue that this is an ARMA(p, q) process,

and specify the p and q. Is it causal and/or invertible? What is the ACF of this process?
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2 Time Series

Consider the state-space model defined by

the state equation xt = Φxt−1 + wt, wt
iid
∼ Np(0, Q),

and the observation equation yt = Axt + vt vt
iid
∼ Nq(0, R).

The initial state is x0 ∼ Np(µ0,Σ0) , and wt and vt are independent. Let

x s
t = E{xt |y1, . . . ,ys}

and P s
t = E{(xt − x s

t )(xt − x s
t )⊤}

be the mean and covariance of the multivariate normal predictive distribution of the state
vector at time t given data up to time s.

Suppose that x t−1

t−1
and P t−1

t−1
are known. Give and justify an expression for the mean

and covariance of the forecasted states, x t−1

t and P t−1

t , in terms of the above quantities
(and the definition of the state space model).

Now, assume that you also had expressions for mean and covariance of the filtered
states, x t

t and P t
t , given x t−1

t and P t−1

t . Describe an algorithm for obtaining the entire
set of forecasted means and covariances, t = 1, . . . , n starting from t = 0 with x 0

0
= µ0,

and P 0
0

= Σ0 .

Obtain an expression for the innovations ǫt = yt − E{yt |y1, . . . , y t−1}, E{ǫt} ,
and Σt = Var(ǫt) in terms of the quantities calculated above, and use these to derive the
likelihood for the parameters Θ = (Φ, A,Q,R) implied by the state space model. Explain
how the likelihood may be evaluated, and thereby how a maximum likelihood estimator
Θ̂ for Θ may be obtained.

3 Monte Carlo Inference

Describe the rejection sampling algorithm for simulating a random variable with
density f . Prove that the output of the algorithm does indeed have density f . Define the
rejection rate M .

Give a rejection sampling algorithm for obtaining samples from a standard normal
distribution using independent samples from a uniform distribution and independent
samples generated from the density g(y) = λe−λy

I{y >0}. Derive the setting of λ > 0
that minimises the rejection rate.

Briefly explain how you would modify the algorithm above to use only independent
samples from a uniform distribution.
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4 Monte Carlo Inference

Let x1, . . . , xn be distinct observed data values. Show that there are
(

2n−1

n

)

distinct
possible non-parametric bootstrap samples (i.e. up to rearrangement).

Describe the estimator θ̂ for a quantity

θ =

∫

∞

2

1

π(1 + x2)
dx

that would be obtained by the following R code

R1a> n <- 100

R2a> x <- rcauchy(n)

R3a> theta.hat <- mean(x > 2)

Now consider the following R code (with the same x as above).

R1b> B <- 199

R2b> M <- matrix(NA, nrow=B, ncol=n)

R3b> for(b in 1:B) M[b,] <- sample(x, n, replace=TRUE)

R4b> v <- apply(M, 1, function(x){mean(x > 2)})

R5b> var(v)

Explain what is being calculated in the code, with particular attention paid to the
expression in line R5b.

Describe the estimator θ̃ obtained using the following R code. In particular, what
role does y play?

R1c> u <- runif(n)

R2c> y <- 2/(1-u)

R3c> w <- y^2/(2*pi*(1+y^2))

R4c> theta.tilde <- mean(w)

Finally, consider the following R code (with the same y as above).

R1d> M2 <- matrix(NA, nrow=B, ncol=n)

R2d> for(b in 1:B) M2[b,] <- sample(y, n, replace=TRUE)

R3d> v2 <- apply(M2, 1, function(y){mean(y^2/(2*pi*(1+y^2)))})

R4d> var(v2)

Explain what is being calculated in the code. How do you think the value calculated in
line R4d compares to the one in line R5b above?
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5 Monte Carlo Inference

Briefly, and qualitatively, compare and contrast the Metropolis–Hastings algorithm
and the Gibbs sampler. You should describe, in particular, when one might be preferred
over the other, and remark on any possible variations.

Let x1, . . . , xn be independent normally distributed observations for which there
is a suspicion of a change–point along the observation of the process for some random
m = 1, . . . , n . That is, given m we have that xi | θ, σ2 ∼ N(θ, σ2), i = 1, . . . , m and
xi |φ, σ2 ∼ N(φ, σ2), i = m + 1, . . . , n . Our prior assumptions are that θ, φ, σ2 have the
scale-invariant (but improper) prior p(θ, φ, σ2) ∝ 1/σ2 and that m has an independent
discrete uniform distribution over {1, . . . , n}.

Determine the joint posterior distribution of (θ, φ, σ2,m) given data x = (x1, . . . , xn)
up to a constant of proportionality.

Devise a Markov chain Monte Carlo scheme based on the Gibbs sampler to sample
from this posterior distribution.

What is the meaning of P (m = n |x)? How would you estimate this quantity using
the sample obtained under the scheme you devised above?

Note that a random variable with an inverse gamma distribution, W ∼ IG(α, β),
has pdf

f(w;α, β) =
βα

Γ(α)
w−(α+1) e−β/w .
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6 Monte Carlo Inference

Let x represent observed data, and z denote missing data, with joint distribution
f(x, z;θ). Briefly describe the iterative Expectation Maximisation (EM) algorithm for
finding the θ̂ that maximises the observed data likelihood L(x |θ). In particular, state
explicitly how the value of θ(t+1) is obtained in iteration t+1 conditional on θ(t) from the
previous iteration, t.

Suppose you have four data points in two dimensions, one of which has a missing
feature in the first component:

{x1,x2,x3,x4} =

{(

x11

x12

)

,

(

x21

x22

)

,

(

x31

x32

)

,

(

z

x42

)}

,

where z represents the unknown value. Consider modelling this data with a bivariate
normal distribution N2(µ,Σ) where

µ = (µ1, µ2), and Σ =

(

σ 2
1 0
0 σ 2

2

)

.

Describe the EM steps that can be used to update the parameters at iteration t, and derive

explicit expressions for the parameters (µ
(t+1)
1 , µ

(t+1)
2 , σ

2(t+1)
1 , σ

2(t+1)
2 ) at iteration t + 1 in

terms of the observations and the parameters from the previous iteration t.

END OF PAPER
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