

MATHEMATICAL TRIPOS Part III

Monday, 7 June, 2010 9:00 am to 11:00 am

PAPER 31

NONPARAMETRIC STATISTICAL THEORY

Attempt no more than **THREE** questions.

There are **FOUR** questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

SPECIAL REQUIREMENTS

None

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let X_1, \ldots, X_n be independent and identically distributed random variables with distribution function $F: \mathbb{R} \to [0,1]$. Define the empirical distribution function $F_n: \mathbb{R} \to [0,1]$. Define the (standard) Brownian bridge \mathbb{G} and the F-Brownian bridge process \mathbb{G}_F . Carefully state Donsker's central limit theorem for $F_n - F$.

Assuming that F is continuous, use Donsker's central limit theorem to prove that

$$\sqrt{n} \sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \xrightarrow{d} \max_{t \in [0,1]} |\mathbb{G}(t)|$$

 $n \to \infty$. [You may use the continuous mapping theorem for convergence in distribution in metric spaces.]

Explain how this result can be used to construct an asymptotic confidence band for F centered at F_n .

2

Let X_1, \ldots, X_n be independent and identically distributed random variables with probability density function $f: \mathbb{R} \to [0, \infty)$. Define the kernel density estimator $f_n^K(x, h)$ of f with bandwidth h.

What is a kernel of order l? Let $\{\phi_m\}_{m\in\mathbb{N}}$ be the orthonormal basis of Legendre polynomials defined by

$$\phi_0(x) := 2^{-1/2}, \qquad \phi_m(x) = \sqrt{\frac{2m+1}{2}} \frac{1}{2^m m!} \frac{d^m}{dx^m} [(x^2 - 1)^m]$$

for $x \in [-1, 1]$ and $m \in \mathbb{N}$. Using these polynomials (or otherwise), construct a kernel of order l. [You may use standard properties of spaces of polynomials in your answer.]

Suppose f is three times differentiable and that f and D^3f are bounded functions. Devise a kernel K and a bandwidth h_n depending on n such that for every $x \in \mathbb{R}$

$$E\left|f_n^K(x,h) - f(x)\right| \leqslant Cn^{-\frac{3}{7}}$$

for some constant C independent of n. Give an example of a probability density function $f: \mathbb{R} \to [0, \infty)$ for which

$$E\left|f_n^K(x,h) - f(x)\right| \leqslant Cn^{-\frac{1}{2}}$$

for every $x \in \mathbb{R}$.

3

If $m: \mathbb{R} \to \mathbb{R}$ is a function for which $\int_{\mathbb{R}} (m(x))^2 dx < \infty$, and if ϕ and ψ are the generating functions of a wavelet basis, define carefully the wavelet series and the wavelet projection of m.

Considering random variables Y_i , design points x_i and a regression function m, define the fixed design regression model. For design points $x_i = i/n$, define the wavelet regression estimator of m. By analogy to the wavelet thresholding density estimator, argue how one could implement a thresholded wavelet regression estimator, and motivate a reasonable choice of thresholds.

4

Let S be a normed space with norm $\|\cdot\|_S$, and let Φ be a real-valued mapping defined on S. Define the notion of Hadamard-differentiability of Φ at a point $s_0 \in S$. Let r_n be real numbers diverging to infinity and let X_n be random variables taking values in S such that $r_n(X_n - s_0)$ converges in distribution to some random variable X taking values in S as $n \to \infty$. Derive the asymptotic distribution of

$$r_n(\Phi(X_n) - \Phi(s_0))$$

as $n \to \infty$. [You may use Skorohod's almost sure representation theorem in the proof, provided it is carefully stated.]

Suppose now $\Phi: L^{\infty} \to \mathbb{R}$ is Hadamard differentiable on the space L^{∞} of bounded real-valued functions defined on \mathbb{R} equipped with the supremum norm $\|f\|_{\infty} = \sup_{t \in \mathbb{R}} |f(t)|$. Suppose you are given a random sample from some unknown distribution function $F: \mathbb{R} \to [0,1]$. Construct an estimator T_n for $\Phi(F)$ such that $\sqrt{n}(T_n - \Phi(F))$ is stochastically bounded, that is, for every $\varepsilon > 0$ there exists $n_0 := n_0(\varepsilon) \in \mathbb{N}$ and $M := M(\varepsilon)$ finite such that $\Pr(\sqrt{n}(T_n - \Phi(F)) \leq M) > 1 - \varepsilon$ for every $n \geq n_0$. [You may use Donsker's central limit theorem in the answer.]

END OF PAPER