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1

Suppose that A is a ring. Define an Artinian A-module. What does it mean to say

that A is Artinian?

Prove carefully that if A is an Artinian ring and M is a finitely generated A-module

then M is an Artinian A-module.

Give an example of an Artinian ring A and a non-Artinian A-module M .

Show that if M is an Artinian A-module and f is an injective endomorphism of the

A-module M , then f is surjective.

2

Suppose that A is a ring. Define the Zariski topology on Spec(A). Show that if A

is a finitely generated C-algebra then there is a 1-1 correspondance between radical ideals
of A and closed subsets of maxSpec(A) equipped with the subspace topology.

Describe this correspondance explicitly for A = C[x] .

3

Suppose that A is a subring of an integral domain B. What does it mean to say

that B is integral over A?

Define the Krull dimension of a ring. Show that if B is integral over A then the two

rings have the same Krull dimension.

Suppose that K is an algebraic field extension of Q and O is its ring of integers.

What is the Krull dimension of O? Justify your answer.

4

Suppose that A is an integral domain. Define Pic(A) the Picard group of A and
Cart(A) the group of Cartier divisors of A. Carefully show that there is a natural exact
sequence of abelian groups

1 → A× → Q(A)× → Cart(A) → Pic(A) → 0 .
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5

Suppose that A is a ring and M is an A-module. Let M∗ := HomZ(M, Q/Z).

Explain how to give M∗ a natural structure as an A-module and show that the
following are equivalent:

1. M is flat;

2. M∗ is injective;

3. I ⊗A M ∼= IM for each ideal I of A;

4. TorA
1

(A/I,M) = 0 for each ideal I of A .

You should prove any results about flatness and injectivity that you use.

6

Suppose A and B are rings. Discuss the construction and properties of the right
derived functors RiF of a left exact contravariant functor

F : A−mod → B−mod .

Illustrate your discussion with the functor M 7→ HomA(A/Aa,M) in the case that
B = A/Aa for a ∈ A not a zero divisor.
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