MATHEMATICAL TRIPOS Part III

Monday, 31 May, 2010 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 3

COMMUTATIVE ALGEBRA

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Suppose that A is a ring. Define an Artinian A-module. What does it mean to say that A is Artinian?

Prove carefully that if A is an Artinian ring and M is a finitely generated A-module then M is an Artinian A-module.

Give an example of an Artinian ring A and a non-Artinian A-module M.

Show that if M is an Artinian A-module and f is an injective endomorphism of the A-module M, then f is surjective.

$\mathbf{2}$

Suppose that A is a ring. Define the Zariski topology on Spec(A). Show that if A is a finitely generated \mathbb{C} -algebra then there is a 1-1 correspondence between radical ideals of A and closed subsets of maxSpec(A) equipped with the subspace topology.

Describe this correspondance explicitly for $A = \mathbb{C}[x]$.

3

Suppose that A is a subring of an integral domain B. What does it mean to say that B is integral over A?

Define the Krull dimension of a ring. Show that if B is integral over A then the two rings have the same Krull dimension.

Suppose that K is an algebraic field extension of \mathbb{Q} and \mathcal{O} is its ring of integers. What is the Krull dimension of \mathcal{O} ? Justify your answer.

$\mathbf{4}$

Suppose that A is an integral domain. Define Pic(A) the Picard group of A and Cart(A) the group of Cartier divisors of A. Carefully show that there is a natural exact sequence of abelian groups

$$1 \to A^{\times} \to Q(A)^{\times} \to \operatorname{Cart}(A) \to \operatorname{Pic}(A) \to 0.$$

UNIVERSITY OF

 $\mathbf{5}$

Suppose that A is a ring and M is an A-module. Let $M^* := \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$.

Explain how to give M^* a natural structure as an A-module and show that the following are equivalent:

- 1. M is flat;
- 2. M^* is injective;
- 3. $I \otimes_A M \cong IM$ for each ideal I of A;
- 4. $\operatorname{Tor}_{1}^{A}(A/I, M) = 0$ for each ideal I of A.

You should prove any results about flatness and injectivity that you use.

6

Suppose A and B are rings. Discuss the construction and properties of the right derived functors $R_i F$ of a left exact contravariant functor

$$F: A - \text{mod} \to B - \text{mod}.$$

Illustrate your discussion with the functor $M \mapsto \operatorname{Hom}_A(A/Aa, M)$ in the case that B = A/Aa for $a \in A$ not a zero divisor.

END OF PAPER