MATHEMATICAL TRIPOS Part III

Friday, 28 May, 2010 $\,$ 9:00 am to 12:00 am

PAPER 29

STOCHASTIC CALCULUS AND APPLICATIONS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Fix a measurable function $\psi : \mathbb{R} \to [0,\infty)$. For a cadlag function $X : [0,\infty) \to \mathbb{R}$, define

$$V_t^{n,\psi} = \sum_{k=0}^{\lceil 2^n t \rceil - 1} \psi \left(X_{(k+1)2^{-n}} - X_{k2^{-n}} \right) \,.$$

(a) Assume that $\psi(u) = |u|, u \in \mathbb{R}$. Show that $\lim_{n\to\infty} V_t^{n,\psi}$ exists in $[0,\infty]$ for all $t \ge 0$. What is the limit V_t called? Show that V_t is cadlag. Give without proof an expression for $\Delta V_t = V_t - V_{t^-}$ in terms of X.

(b) Assume that X is a continuous local martingale in some filtered probability space satisfying the usual conditions, and for $u \in \mathbb{R}$ let $\psi(u) = |u|^p$, where p > 2. Show that $\lim_{n\to\infty} V_t^{n,\psi} = 0$, uniformly on compacts in probability (u.c.p).

(c) Now assume that X is a continuous local martingale with $X_0 = 0$, and that $\psi(u) = |u|^p$ for $u \in \mathbb{R}$, where $1 . Assume that almost surely, <math>\limsup_{n \to \infty} V_t^{n,\psi} < \infty$ for some $t \ge 0$. Show that X is indistinguishable from 0 on [0, t].

(d) Let $\psi(u) = u^2$, and let X be a continuous martingale satisfying $\sup_{t \ge 0} \mathbb{E}(X_t^2) < \infty$. Without assuming anything about the quadratic variation of martingales, show that for all $t \ge 0$, $\mathbb{E}(V_t^{n,\psi})$ remains bounded as $n \to \infty$.

 $\mathbf{2}$

Let X be a standard Gaussian random variable in \mathbb{R}^d , and let $f : \mathbb{R}^d \to \mathbb{R}$ be a function of class C^2 on \mathbb{R}^d , such that for some K > 0, $\|\nabla f(x)\| \leq K$ for all $x \in \mathbb{R}^d$, where $\|\cdot\|$ stands for the Euclidean norm in \mathbb{R}^d . The goal of this problem is to show that

$$\mathbb{P}(|f(X) - \mu| > r) \leqslant 4e^{-r^2/(2K)},\tag{1}$$

for all r > 0, where $\mu = \mathbb{E}(f(X))$.

(a) Let $(X_t, t \ge 0)$ be a *d*-dimensional Brownian motion started at 0, and let $\mathcal{F}_t = \sigma(X_s, 0 \le s \le t)$. For $0 \le t \le 1$, let $M_t = \mathbb{E}(f(X_1)|\mathcal{F}_t)$. Show that

$$M_t = P_{1-t}f(X_t), \quad a.s.,$$

where for any $s \ge 0$, $P_s f(x) = \mathbb{E}_x[f(X_s)]$ is the semi-group of Brownian motion in \mathbb{R}^d , and \mathbb{E}_x indicates that the process starts at $x \in \mathbb{R}^d$.

(b) Using Itô's formula, show that

$$dM_t = \sum_{i=1}^d P_{1-t} \frac{\partial f}{\partial x_i}(X_t) dX_t^i,$$

where X^i denotes the *i*th coordinate process of X. [In applying Itô's formula, you are not required to verify that the function is C^2 . It may simplify your calculations to observe that M is a martingale.]

(c) Let [M] denote the quadratic variation of M. Show that $[M]_1 \leq K^2$. Then, using the Dubins-Schwarz theorem (which you should state), show that

$$\mathbb{P}(|M_1 - M_0| > r) \leq 2\mathbb{P}\left(\sup_{0 \leq s \leq K^2} B_s > r\right),\$$

where B is a one-dimensional Brownian motion.

(d) Using the reflection principle or otherwise, deduce (1). [You may admit the following result without proof: let Z be a standard Gaussian random variable, then $\mathbb{P}(Z > r) \leq e^{-r^2/2}$ for all $r \geq 0$.]

[Non-examinable: the conclusion (1) can be extended to arbitrary Lipschitz functions, through what is called Rademacher's theorem].

3

For x > 0, let \mathbb{W}_x denote the Wiener measure started at x, i.e., the probability measure on the space of continuous trajectories $\Omega = C([0,\infty),\mathbb{R})$ under which the canonical process $(X_t, t \ge 0)$ is a (one-dimensional) Brownian motion started at x. We equip Ω with its Borel σ -algebra \mathcal{F} and the canonical filtration $(\mathcal{F}_t, t \ge 0)$. For $y \in \mathbb{R}$, let $T_y = \inf\{t \ge 0 : X_t = y\}$, and let $\tau = T_M \wedge T_{\varepsilon}$, where $0 < \varepsilon < x < M$ are fixed for the moment. Define also $M_t = \int_0^{t \wedge T_0} dX_s/X_s$, and let $Z_t = \exp(M_t - \frac{1}{2}[M]_t)$.

(a) State Girsanov's theorem. Define a probability measure $\mathbb{Q}^{M,\varepsilon}$ on (Ω, \mathcal{F}) , by saying $\mathbb{Q}^{M,\varepsilon}(A) = \mathbb{E}_{\mathbb{W}_x}(\mathbf{1}_A Z_{\tau})$ for all $A \in \mathcal{F}$. Show that, under $\mathbb{Q}^{M,\varepsilon}$, $X_t = x + B_t + \int_0^t \frac{ds}{X_s}$, for all $t \leq \tau$, where B is a $\mathbb{Q}^{M,\varepsilon}$ -Brownian motion.

[You may assume without proof that Z^{τ} is uniformly integrable.]

(b) Let $(W_t, t \ge 0)$ be a three-dimensional Brownian motion, started from $\bar{x} = (x, 0, 0)$, and let $R_t = ||W_t||$. R is called a (three-dimensional) Bessel process started at x. Show, using Itô's formula, that $dR_t = dB_t + \frac{1}{R_t}dt$, where B is one-dimensional Brownian motion, and deduce that the law of $(R_{t\wedge\tau}, t\ge 0)$, is the same as $(X_{t\wedge\tau}, t\ge 0)$ under $\mathbb{Q}^{M,\varepsilon}$.

(c) Using Itô's formula, show that for $t \leq \tau$, $d(\log Z_t) = d\log(X_t)$, and hence deduce $Z_t = X_t/x$ for $t \leq \tau$, \mathbb{W}_x almost surely.

(d) By letting $\varepsilon \to 0$, show that the law \mathbb{Q}^M of $(R_{t \wedge T_M}, t \ge 0)$, where R is a Bessel process started at x, is absolutely continuous with respect to \mathbb{W}_x , with density

$$\frac{d\mathbb{Q}^M}{d\mathbb{W}_x} = \mathbf{1}_{\{T_M < T_0\}} \frac{M}{x}$$

Conclude that \mathbb{Q}^M is the law of a Brownian motion conditioned to hit M before hitting 0, and stopped at M. [Thus, informally, a Bessel process is a Brownian motion conditioned to hit $+\infty$ before hitting 0.]

UNIVERSITY OF

 $\mathbf{4}$

Let $(B_t, t \ge 0)$ be a Brownian motion in \mathbb{R}^2 .

(a) State and prove the theorem showing that the law of B is conformally invariant. [You may assume other results of the course if they are clearly stated.]

(b) Assume that B starts at $B_0 = (1,0)$. For $\theta \in (-\pi,\pi)$ let $\Delta_{\theta} = \{z \in \mathbb{C}, z = re^{i\theta} \text{ for some } r \ge 0\}$ be the semi-infinite line passing through the origin and of angle θ with respect to the real axis, and let $S_{\theta} = \inf\{t \ge 0 : B_t \in \Delta_{\theta}\}$, when we identify \mathbb{R}^2 with the complex plane \mathbb{C} . Fix $0 < \alpha, \beta < \pi$. Using conformal invariance and the holomorphic function $z \mapsto e^z$, compute $\mathbb{P}(S_{\beta} < S_{-\alpha})$.

(c) Let $R_t = ||B_t||$ be the radial part of B, and let θ_t be a continuous determination of the argument of B_t such that $\theta_0 = 0$, hence $B_t = R_t e^{i\theta_t}$. $[(\theta_t, t \ge 0)$ is only defined on the event that B never hits 0, which holds almost surely]. For r > 0, let $T_r = \inf\{t \ge 0 : R_t = e^{-r}\}$. Show that $(\theta_{T_r}, r \ge 0)$ is a Lévy process, i.e., has independent and stationary increments.

$\mathbf{5}$

(a) Let $(H_t, t \ge 0)$ be a left-continuous and locally bounded process which is adapted to a filtration (\mathcal{F}_t) satisfying the usual conditions. Let X be a continuous semimartingale. Show that $|2^n t| - 1$

$$\sum_{k=0}^{m} H_{k2^{-n}}(X_{(k+1)2^{-n}} - X_{k2^{-n}}) \to \int_0^t H_s dX_s,$$

as $n \to \infty$, uniformly on compacts in probability.

(b) Define the *covariation* between two continuous semimartingales X and Y. State the integration by parts formula, and prove it using (a). [You may use without proof any result from the course about the quadratic variation of a continuous semimartingale, but you may not use Itô's formula.]

6

(a) Let X be a continuous adapted process defined on a probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ with values in \mathbb{R} , and let a(x), b(x) be two measurable real functions. Explain what it means to say that X solves the martingale problem $\mathbf{M}(a, b)$ associated with a and b. What does it mean to say X is a diffusion generated by L, where Lf(x) = (1/2)a(x)f''(x) + b(x)f'(x), for sufficiently smooth functions f?

Show that if X solves $\mathbf{M}(a,b)$ and $a(x) = \sigma^2(x) > 0$ for all $x \in \mathbb{R}$ for some measurable function σ , then X solves a suitable stochastic differential equation. [You may assume Lévy's characterisation of Brownian motion, provided you state it clearly.] Summarise the relationships between diffusion processes and solutions of martingale problems.

(b) Let $n \ge 1$, and a > 0. Consider a population of bacteria that evolves in discrete time according to the following Markovian dynamics. If the population size is currently $k \ge 1$, it increases by one with probability $p_k = \alpha k/n$, decreases by one with probability $q_k = \beta k^2/n^2$, where $\alpha, \beta > 0$, and otherwise stays constant. The evolution stops if $p_k + q_k > 1$. Initially the population size is $\lfloor \alpha n/\beta \rfloor$. We assume that $2\alpha^2 < \beta$.

Let (Y_0^n, Y_1^n, \ldots) denote the evolution of the total population size, and let \tilde{Y}^n is the linear interpolation of Y^n . Define the rescaled process by

$$X_t^n = \frac{\tilde{Y}_{\lfloor nt \rfloor}^n - n\frac{\alpha}{\beta}}{\sqrt{n}} \,.$$

Show that $(X_{t\wedge\tau}^n, 0 \leq t \leq 1) \to (X_t, 0 \leq t \leq 1)$ weakly as $n \to \infty$, where X is the solution of a certain stochastic differential equation which you should determine, and τ is the time at which the evolution of X^n stops.

[State carefully the result you are applying.]

Deduce that $\mathbb{P}(\tau \leq 1) \to 0$ as $n \to \infty$ (a brief justification suffices).

END OF PAPER