
MATHEMATICAL TRIPOS Part III

Friday, 28 May, 2010 9:00 am to 12:00 am

PAPER 29

STOCHASTIC CALCULUS AND APPLICATIONS

Attempt no more than FOUR questions.

There are SIX questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Cover sheet None
Treasury Tag
Script paper

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.



2

1

Fix a measurable function ψ : R → [0,∞). For a cadlag function X : [0,∞) → R,
define

V
n,ψ
t =

⌈2nt⌉−1
∑

k=0

ψ
(

X(k+1)2−n −Xk2−n

)

.

(a) Assume that ψ(u) = |u|, u ∈ R. Show that limn→∞ V
n,ψ
t exists in [0,∞] for

all t > 0. What is the limit Vt called? Show that Vt is cadlag. Give without proof an
expression for ∆Vt = Vt − Vt− in terms of X.

(b) Assume that X is a continuous local martingale in some filtered probability
space satisfying the usual conditions, and for u ∈ R let ψ(u) = |u|p, where p > 2. Show

that limn→∞ V
n,ψ
t = 0, uniformly on compacts in probability (u.c.p).

(c) Now assume that X is a continuous local martingale with X0 = 0, and that

ψ(u) = |u|p for u ∈ R, where 1 < p < 2. Assume that almost surely, lim supn→∞ V
n,ψ
t <∞

for some t > 0. Show that X is indistinguishable from 0 on [0, t].

(d) Let ψ(u) = u2, and let X be a continuous martingale satisfying supt>0 E(X2
t ) <

∞. Without assuming anything about the quadratic variation of martingales, show that
for all t > 0, E(V n,ψ

t ) remains bounded as n→ ∞.
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Let X be a standard Gaussian random variable in R
d, and let f : R

d → R be a
function of class C2 on R

d, such that for some K > 0, ‖∇f(x)‖ 6 K for all x ∈ R
d, where

‖ · ‖ stands for the Euclidean norm in R
d. The goal of this problem is to show that

P(|f(X) − µ| > r) 6 4e−r2/(2K), (1)

for all r > 0, where µ = E(f(X)).

(a) Let (Xt, t > 0) be a d-dimensional Brownian motion started at 0, and let
Ft = σ(Xs, 0 6 s 6 t). For 0 6 t 6 1, let Mt = E(f(X1)|Ft). Show that

Mt = P1−tf(Xt), a.s.,

where for any s > 0, Psf(x) = Ex[f(Xs)] is the semi-group of Brownian motion in R
d,

and Ex indicates that the process starts at x ∈ R
d.

(b) Using Itô’s formula, show that

dMt =

d
∑

i=1

P1−t
∂f

∂xi
(Xt)dXi

t ,

where Xi denotes the ith coordinate process of X. [In applying Itô’s formula, you are not
required to verify that the function is C2. It may simplify your calculations to observe
that M is a martingale.]

(c) Let [M ] denote the quadratic variation of M . Show that [M ]1 6 K2. Then,
using the Dubins-Schwarz theorem (which you should state), show that

P(|M1 − M0| > r) 6 2P

(

sup
06s6K2

Bs > r

)

,

where B is a one-dimensional Brownian motion.

(d) Using the reflection principle or otherwise, deduce (1). [You may admit the
following result without proof: let Z be a standard Gaussian random variable, then
P(Z > r) 6 e−r2/2 for all r > 0.]

[Non-examinable: the conclusion (1) can be extended to arbitrary Lipschitz functions,
through what is called Rademacher’s theorem].
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For x > 0, let Wx denote the Wiener measure started at x, i.e., the probability
measure on the space of continuous trajectories Ω = C([0,∞), R) under which the
canonical process (Xt, t > 0) is a (one-dimensional) Brownian motion started at x. We
equip Ω with its Borel σ-algebra F and the canonical filtration (Ft, t > 0). For y ∈ R, let
Ty = inf{t > 0 : Xt = y}, and let τ = TM ∧ Tε, where 0 < ε < x < M are fixed for the

moment. Define also Mt =
∫ t∧T0

0
dXs/Xs, and let Zt = exp(Mt −

1

2
[M ]t).

(a) State Girsanov’s theorem. Define a probability measure QM,ε on (Ω,F), by
saying QM,ε(A) = EWx

(1AZτ ) for all A ∈ F . Show that, under QM,ε, Xt = x+Bt +
∫ t

0

ds
Xs

,

for all t 6 τ , where B is a QM,ε-Brownian motion.

[You may assume without proof that Zτ is uniformly integrable.]

(b) Let (Wt, t > 0) be a three-dimensional Brownian motion, started from x̄ =
(x, 0, 0), and let Rt = ‖Wt‖. R is called a (three-dimensional) Bessel process started at x.
Show, using Itô’s formula, that dRt = dBt + 1

Rt
dt, where B is one-dimensional Brownian

motion, and deduce that the law of (Rt∧τ , t > 0), is the same as (Xt∧τ , t > 0) under QM,ε.

(c) Using Itô’s formula, show that for t 6 τ , d(log Zt) = d log(Xt), and hence deduce
Zt = Xt/x for t 6 τ , Wx almost surely.

(d) By letting ε → 0, show that the law QM of (Rt∧TM
, t > 0), where R is a Bessel

process started at x, is absolutely continuous with respect to Wx, with density

dQM

dWx

= 1{TM <T0}
M

x
.

Conclude that QM is the law of a Brownian motion conditioned to hit M before hitting 0,
and stopped at M . [Thus, informally, a Bessel process is a Brownian motion conditioned
to hit +∞ before hitting 0.]
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Let (Bt, t > 0) be a Brownian motion in R
2.

(a) State and prove the theorem showing that the law of B is conformally invariant.
[You may assume other results of the course if they are clearly stated.]

(b) Assume that B starts at B0 = (1, 0). For θ ∈ (−π, π) let ∆θ = {z ∈ C, z =
reiθ for some r > 0} be the semi-infinite line passing through the origin and of angle θ

with respect to the real axis, and let Sθ = inf{t > 0 : Bt ∈ ∆θ}, when we identify R
2 with

the complex plane C. Fix 0 < α, β < π. Using conformal invariance and the holomorphic
function z 7→ ez, compute P(Sβ < S

−α).

(c) Let Rt = ‖Bt‖ be the radial part of B, and let θt be a continuous determination
of the argument of Bt such that θ0 = 0, hence Bt = Rte

iθt . [(θt, t > 0) is only
defined on the event that B never hits 0, which holds almost surely]. For r > 0, let
Tr = inf{t > 0 : Rt = e−r}. Show that (θTr

, r > 0) is a Lévy process, i.e., has independent
and stationary increments.

5

(a) Let (Ht, t > 0) be a left-continuous and locally bounded process which is adapted
to a filtration (Ft) satisfying the usual conditions. Let X be a continuous semimartingale.
Show that

⌊2n
t⌋−1∑

k=0

Hk2−n(X(k+1)2−n − Xk2−n) →

∫
t

0
HsdXs,

as n → ∞, uniformly on compacts in probability.

(b) Define the covariation between two continuous semimartingales X and Y . State
the integration by parts formula, and prove it using (a). [You may use without proof any
result from the course about the quadratic variation of a continuous semimartingale, but
you may not use Itô’s formula.]
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(a) Let X be a continuous adapted process defined on a probability space (Ω,F , (Ft), P)
with values in R, and let a(x), b(x) be two measurable real functions. Explain what it
means to say that X solves the martingale problem M(a, b) associated with a and b. What
does it mean to say X is a diffusion generated by L, where Lf(x) = (1/2)a(x)f ′′(x) +
b(x)f ′(x), for sufficiently smooth functions f?

Show that if X solves M(a, b) and a(x) = σ2(x) > 0 for all x ∈ R for some
measurable function σ, then X solves a suitable stochastic differential equation. [You
may assume Lévy’s characterisation of Brownian motion, provided you state it clearly.]
Summarise the relationships between diffusion processes and solutions of martingale
problems.

(b) Let n > 1, and a > 0. Consider a population of bacteria that evolves in discrete
time according to the following Markovian dynamics. If the population size is currently
k > 1, it increases by one with probability pk = αk/n, decreases by one with probability
qk = βk2/n2, where α, β > 0, and otherwise stays constant. The evolution stops if
pk + qk > 1. Initially the population size is ⌊αn/β⌋. We assume that 2α2 < β.

Let (Y n
0

, Y n
1

, . . .) denote the evolution of the total population size, and let Ỹ n is the
linear interpolation of Y n. Define the rescaled process by

Xn
t =

Ỹ n
⌊nt⌋ − nα

β√
n

.

Show that (Xn
t∧τ , 0 6 t 6 1) → (Xt, 0 6 t 6 1) weakly as n → ∞, where X is the solution

of a certain stochastic differential equation which you should determine, and τ is the time
at which the evolution of Xn stops.

[State carefully the result you are applying.]

Deduce that P(τ 6 1) → 0 as n → ∞ (a brief justification suffices).

END OF PAPER
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