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1 Biased Random Walks.

Let (Xn)n >1 be a sequence of iid random variables such that P(X1 = 1) = p and
P(X1 = −1) = 1 − p =: q , and define Sn = X1 + · · · + Xn . We shall write Fn for
σ(X1, . . . , Xn); all martingales will be with respect to the filtration (Fn)n >1 .

a) Define for n > 1 the random variable Zn =

(

q

p

)Sn

. Prove that the process (Zn)n >1 is

a martingale.

b)

(i) State Doob’s maximal inequality. Use it to prove that we have for any k > 1

P(sup
n

Sn > k) 6

(

p

q

)k

(ii) If q > p ,

E [sup
n

Sn] 6
p

q − p
.

c) Suppose that q > p .

(i) Find the limit of Zn as n goes to infinity.

(ii) Given k > 1, set Hk = inf{n > 1 ; Sn > k}. Prove that

lim
n→+∞

Zn∧Hk
= eλk 1Hk <∞

and compute P(Hk < ∞).

(iii) Hence prove that supn Sn has a geometric distribution of parameter 1 −
p

q
.
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2 Empirical Distributions

a) Let (Xn)n >1 be a sequence of iid random variables with uniform law on [0, 1]. Define
the empirical distribution function as

Fn(t) =
1

n

n
∑

k=1

1Xk 6t , t ∈ [0, 1] .

(i) Prove that sup
t∈F

∣

∣Fn(t)− t
∣

∣ converges almost-surely to 0 as n goes to infinity for any

finite family F of elements of [0, 1].

(ii) Prove that sup
x∈ [0,1]

∣

∣Fn(x) − x
∣

∣ converges almost-surely to 0 as n goes to infinity.

(iii) Let µ be any (Borel) probability measure on R and (Yk)k >1 an iid sequence of
random variables with common distribution µ ; set G(x) = µ

(

(−∞, x]
)

; Denote by Gn the
empirical distribution function of the sequence (Yk)k >1

Gn(x) =
1

n

n
∑

k=1

1Yk 6x , x ∈ R .

Using the result established in (ii), prove that sup
x∈R

∣

∣Gn(x)−G(x)
∣

∣ converges almost-surely

to 0 as n goes to infinity.

b)

(i) State the definition of a Gaussian process indexed by an arbitrary set T . Why do
the mean and covariance functions determine uniquely the law of the process? You may
assume any standard properties of Gaussian random variables.

(ii) A Brownian bridge is a centered Gaussian process (Zt)t∈ [0,1] with covariance
function E[Zt Zs] = s(1−t), for 0 6 s < t 6 1 . Show, by specifying a suitable construction
of a Brownian bridge, that the sample paths may be taken to be almost-surely continuous.

(iii) In this part we come back to the setting of part a. Set

Zn(t) =
√

n
(

Fn(t) − t
)

, t ∈ [0, 1] .

Prove that the finite dimensional laws of Zn converge to the finite dimensional laws of a
Brownian bridge.
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3 Symmetric Sequences of Random Variables (1)

This question can be answered independently of question 4

Denote by (Ω,F) the product space R
N equipped with its product σ-algebra.

Denote by (Xn)n >0 the coordinate process on Ω ; for a generic element ω of Ω we
have ω =

(

Xn(ω)
)

n >0
. Set En = σ(X0, . . . , Xn), Gn = σ(Xn+1, Xn+2, . . . ) and

G =
⋂

n >0 Gn .

Denote also by S the group of permutations of N which fix all but finitely many
elements of N.

A probability P on (Ω,F) is said to be symmetric if the process (Xσ(n))n >0 has
the same law as (Xn)n >0 under P for any permutation σ ∈ S .

Last, denote by S the σ-algebra of Ω made up of events A ∈ F such that
ω =

(

Xn(ω)
)

n >0
∈ A iff

(

Xσ(n)(ω)
)

n >0
∈ A , for any permutation σ ∈ S .

a) Let A be an event in S, and write F for 1A. Why do the following convergence
results hold in L

1 ?

F = lim
n→+∞

E [F |En] , E [F |G] = lim
n→+∞

E [F |Gn] .

b) Suppose now that the probability P is symmetric. Given ǫ > 0 , pick n large enough
to have

∥

∥F − E [F |En]
∥

∥

1
6 ǫ , and

∥

∥E [F |G] − E [F |Gn]
∥

∥

1
6 ǫ .

Prove that
∥

∥F − E
[

F
∣

∣σ(Xn+1, . . . , X2n+1)
]
∥

∥

1
6 ǫ and conclude that the event A

coincides P-almost-surely with an event of the σ-algebra G. [Hint: prove that the operator
Z ∈ L

1  E[Z|Gn] ∈ L
1 is a contraction.]
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4 Symmetric Sequences of Random Variables (2)

This question can be answered independently of question 3. We use the same

notations as in question 3.

The aim of this problem is to prove that if P is a symmetric probability on the

product space (Ω,F) then the random variables X0,X1, . . . are independent conditionally

on the σ-algebra S . This means that, for any p > 0 and any Borel sets A0, . . . , Ap of R,
we have P-almost-surely

E

[

p
∏

i=0

1Ai
(Xi)

∣

∣

∣
S

]

=

p
∏

i=0

E
[

1Ai
(Xi)

∣

∣S
]

. (1)

Given m > 1, denote by Sm the σ-algebra on Ω made up of events A ∈ F such that
ω =

(

Xn(ω)
)

n >0
∈ A iff

(

Xσ(n)(ω)
)

n >0
∈ A , for any permutation σ fixing all indices

greater than m . These σ-algebras decrease to S. Given k ∈ {0, . . . , p} , set

S k
m = 1Ak

(X0) + · · · + 1Ak
(Xm) .

a) Fix k in {0, . . . , p} . Using the same reasoning as in the backward martingale

proof of the strong law of large numbers given in the lectures, prove that
S k

m

m + 1
converges

P-almost-surely to E
[

1Ak
(Xk)

∣

∣S
]

as m → +∞ . Prove, as a consequence, that we have
P-almost-surely

p
∏

k=0

E
[

1Ak
(Xk)

∣

∣S
]

= lim
m→+∞

1

(m + 1)p+1

∑

0 6ℓ0, ... , ℓp6m

1A0
(Xℓ0) . . . 1Ap(Xℓp

) .

b) For m > p prove that

E

[

p
∏

k=0

1Ak
(Xk)

∣

∣Sm

]

=
1

(m + 1)m . . . (m + 1 − p + 1)

∑

1A0
(Xℓ0) . . . 1Ap(Xℓp

) .

where the sum is over all sets of distinct integers {ℓ0, . . . , ℓp} in {0, ... , m} .

c) Combining parts a) and b) prove identity (1).
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5 Brownian Motion and Holomorphic Functions

Let U be an open set of the complex plane C. Recall that a complex valued function
f : U → C is holomorphic if its differential, as a function from R

2 to R
2 is of the form

(

a −b

b a

)

, a, b ∈ R , at any point of U . Write f = ℜf + iℑf . The composition of two

holomorphic functions is a holomorphic function. The logarithm function is a well-defined
holomorphic function on the half-plane {(x, y); y > 1}.

a) Prove that △
(

ℜf
)

= △
(

ℑf
)

= 0 .

b)

(i) Use the optional stopping theorem to prove that ℜf and ℑf cannot have a local
maximum in U without being constant.

(ii) Let g : U → C be a holomorphic function. Considering f = logg on a well-
chosen set, deduce from (i) that |g| cannot have a local maximum in U without being
constant.

c) Without using b), and using the fact that the reciprocal of a non-vanishing
holomorphic function is holomorphic, and the properties of the 2-dimensional Brownian
motion, prove the fundamental theorem of algebra: Any non-constant polynomial P : C →
C has 0 in its range.

d) Give another proof of that fact using b).
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6 Hitting Time Process

Let X = (Xt)t >0 be a real-valued Brownian motion defined on some probability
space.

a) Given 0 6 α < β < ∞ , prove that P
(

(Xt)t∈ [α, β] is non-decreasing
)

= 0 .
Deduce that, almost-surely, there exists no interval of positive length on which X is non-
decreasing.

For a > 0 , set Ha = inf{s > 0 ; Xs = a} and Sa = inf{s > 0 ; Xs > a} .

b) Given a > 0 , show that Ha and Sa are almost-surely equal. Yet, show by an
illustration that the two processes H = (Ha)a >0 and S = (Sa)a >0 are not almost-surely
equal.

c) State the definition of a Lévy process, and prove that S is a Lévy process. Why
is H not a Lévy process?

d) Prove that S is almost-surely nowhere continuous.

END OF PAPER
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