MATHEMATICAL TRIPOS Part III

Monday, 31 May, 2010 1:30 pm to 3:30 pm

PAPER 26

ALGEBRAIC NUMBER THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

2

1

State and prove the Kummer–Dedekind theorem. Determine which primes ramify in $\mathbb{Q}(\zeta_{80})/\mathbb{Q}$, where ζ_n denotes a primitive *n*-th root of 1.

[You may assume that the ring of integers of $\mathbb{Q}(\zeta_n)$ is $\mathbb{Z}[\zeta_n]$.]

$\mathbf{2}$

(i) Let F/K be a Galois extension of number fields. Let \mathfrak{p} be a prime of K with residue field $k_{\mathfrak{p}}$, and \mathfrak{q} a prime of F above \mathfrak{p} with residue field $k_{\mathfrak{q}}$. Prove that the natural map from the decomposition group of \mathfrak{q} to $\operatorname{Gal}(k_{\mathfrak{q}}/k_{\mathfrak{p}})$ is surjective.

Now let $F = \mathbb{Q}(\zeta_3, \sqrt[3]{2})$, where ζ_3 denotes a primitive cube root of 1.

(ii) Prove that no prime of F has absolute residue degree 6.

(ii) The prime 7 decomposes in $\mathbb{Q}(\zeta_3)$ as $\mathfrak{p}_1\mathfrak{p}_2$, where $\mathfrak{p}_1 = (\zeta_3 + 3)$ and $\mathfrak{p}_2 = (\zeta_3^2 + 3)$. Determine the Frobenius element of \mathfrak{p}_1 in $F/\mathbb{Q}(\zeta_3)$.

3

Let $F = \mathbb{Q}(\sqrt{-2}, \sqrt{-3})$, and let ρ be the regular representation of $\operatorname{Gal}(F/\mathbb{Q}) \simeq C_2 \times C_2$, *i.e.* the direct sum of its four 1-dimensional representations. Compute the first ten coefficients a_1, \ldots, a_{10} of its Artin *L*-series $L(\rho, s) = \sum_{n \ge 1} a_n n^{-s}$.

$\mathbf{4}$

State and prove Chebotarev's density theorem. Prove that for a monic irreducible polynomial f(X) with integer coefficients, there are infinitely many primes p such that $f(X) \mod p$ has no roots in \mathbb{F}_p .

[You may assume that Artin L-functions have meromorphic continuation to \mathbb{C} , analytic on $\Re(s) > 1$, that the Riemann ζ -function $\zeta(s)$ has a simple pole at s = 1, and that $L(\rho, s)$ is analytic and non-zero at s = 1 for non-trivial irreducible representations ρ .]

END OF PAPER