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1

State and prove the Kummer–Dedekind theorem. Determine which primes ramify
in Q(ζ80)/Q, where ζn denotes a primitive n-th root of 1.

[You may assume that the ring of integers of Q(ζn) is Z[ζn].]

2

(i) Let F/K be a Galois extension of number fields. Let p be a prime of K with
residue field kp, and q a prime of F above p with residue field kq. Prove that the natural
map from the decomposition group of q to Gal(kq/kp) is surjective.

Now let F = Q(ζ3,
3
√

2), where ζ3 denotes a primitive cube root of 1.

(ii) Prove that no prime of F has absolute residue degree 6.

(ii) The prime 7 decomposes in Q(ζ3) as p1p2, where p1 = (ζ3 +3) and p2 = (ζ2

3
+3).

Determine the Frobenius element of p1 in F/Q(ζ3).

3

Let F = Q(
√
−2,

√
−3), and let ρ be the regular representation of

Gal(F/Q) ≃ C2×C2 , i.e. the direct sum of its four 1-dimensional representations. Com-
pute the first ten coefficients a1, ... , a10 of its Artin L-series L(ρ, s) =

∑
n>1

an n−s.

4

State and prove Chebotarev’s density theorem. Prove that for a monic irreducible
polynomial f(X) with integer coefficients, there are infinitely many primes p such that
f(X) mod p has no roots in Fp .

[You may assume that Artin L-functions have meromorphic continuation to C, analytic

on ℜ(s) > 1, that the Riemann ζ-function ζ(s) has a simple pole at s = 1 , and that L(ρ, s)
is analytic and non-zero at s = 1 for non-trivial irreducible representations ρ.]
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