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This question is about the averages of various arithmetic functions. The divisor
function τ is defined by letting τ(n) be the number of natural numbers dividing n; the
Möbius function µ is defined by

µ(n) =

{

(−1)k if n = p1 . . . pk with p1, . . . , pk distinct primes ,

0 otherwise ;

and the von Mangoldt function Λ is defined by

Λ(n) =

{

log p if n = pk with p prime ,

0 otherwise .

Write
∆(n) :=

∑

x 6n

(τ(x) − log x − 2γ) ,

where

γ :=

∫

∞

1

{x}
x⌊x⌋ dx .

Prove that ∆(n) = O(
√

n) . Hence or otherwise prove that if

1

n

∑

x 6n

µ(x) = o(1)

then
1

n

∑

x 6n

Λ(x) = 1 + o(1) .

Take care to prove any identities between arithmetic functions that you use.

Part III, Paper 25



3

2

This question concerns a proof of the prime number theorem. Suppose that
f ∈ ℓ∞(N) and σ > 1 is a damping constant. We write mf,σ for the (complex) measure
on R induced by the map

g 7→
∑

n∈N

f(n)n−σg(log n) .

Writing 1 for the constant function taking the value 1 and µ for the Möbius function
we have

m̂1, σ(t) =

∞
∑

n = 1

1

nσ + it
and m̂µ, σ(t) =

∞
∑

n= 1

µ(n)

nσ + it
.

Prove that
|m̂µ, σ(t)| = O((σ − 1)−3/4 log1/2(2 + |t|)) .

Give a short description of how this may be used to prove

d k m̂µ, σ

dtk
(t) = Ok((σ − 1)−3(k+1)/4 logO(k)(2 + |t|))

for any natural number k ∈ N. Using this estimate, or otherwise, prove that there is some
absolute c > 0 such that

∑

x 6n

µ(x) logk x = Ok(n log(1−c) k+O(1) n) .

You may assume that for any x ∈ R one has

1

2πi

∫

∞

−∞

exp(x(σ + it))

(σ + it)2
dt =

{

x if x > 0 ,

0 otherwise .
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This question is about Dirichlet’s theorem on primes in arithmetic progressions. For
ℜs > 1 (here ℜs denotes the real part of s) the Riemann ζ-function is defined by

ζ(s) :=
∞

∑

n= 1

1

ns
.

Similarly, given a Dirichlet character χ the corresponding Dirichlet L-function is defined
by

L(s, χ) :=
∞

∑

n= 1

χ(n)

ns

in the same region. Write down the Euler product formula for ζ(s) and L(s, χ) valid in
this region. Explain why L(s, χ) 6= 0 in this region.

Prove Dirichlet’s theorem that given coprime naturals a and q there are infinitely
many primes p with p ≡ a (mod q) . You may assume the inversion formula:

1

φ(q)

∑

χ

χ(a) χ(n) =

{

1 if n ≡ a (mod q) ,

0 otherwise ;

the orthogonality relation

∑

1 6n6q

χ(n) =

{

φ(q) if χ = χ0 ,

0 otherwise ,

where χ0 is the principal character; and that ζ may be meromorphically continued to the
range ℜs > 0 such that

ζ(s) =
s

s − 1
− s

∫

∞

1

{x}x−s− 1 dx .
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This question concerns estimating the fractional part of αn2. State Dirichlet’s
pigeon-hole principle which you may assume. Prove that if θ ∈ R and s, t ∈ Z then
we have the estimate

∣

∣

∣

∣

∣

t
∑

n= s

exp(2πi θn)

∣

∣

∣

∣

∣

6 min

{

t − s + 1 ,
1

2‖θ‖

}

.

Prove that if θ1, . . . , θk are δ-separated, i.e. ‖θi − θj‖ > δ for all i 6= j , then

k
∑

i = 1

min

{

Q,
1

2‖θi‖

}

= O((Q + δ−1) log Q) .

State and prove Weyl’s inequality giving an upper estimate for the sum

∣

∣

∣

∣

∣

N
∑

n = 0

exp(2πiαn2)

∣

∣

∣

∣

∣

when |α − a/q| 6 1/qQ . Assuming, if you wish, that for any prime P and set
A ⊂ G := Z/PZ of density α with A ∩ [−L,L] = ∅ , we have

sup
0 6= |r|6(P/L)2

∣

∣

∣

∣

∣

∑

x∈A

exp(2πi rx/p)

∣

∣

∣

∣

∣

> αL/2P .

Prove that there is an absolute constant c > 0 such that

min{‖αn2‖ : 1 6 n 6 N} = O(N−c)

where ‖θ‖ := min{|θ − z| : z ∈ Z} .
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This question concerns the proof of Vinogradov’s three primes theorem via Vaughn’s
identity. This identity is the decomposition

Λ̂N (θ) = S1 + S4 + S5 + O(X)

where
Λ̂N (θ) =

∑

n 6N

Λ(n) exp(2πi θn) ,

S1 :=
∑

a 6X

µ(a)
∑

b 6N/a

log b exp(2πi ab θ) ,

S4 = −
∑

X < u 6N

∑

a |u, a 6X

µ(a)
∑

X < d 6N/u

Λ(d) exp(2πi udθ) ,

and
S5 := −

∑

a 6X

µ(a)
∑

v 6N/a

∑

d 6min{X,N/av}

Λ(d) exp(2πi avdθ) .

Prove that if θ ∈ R has |θ−a/q| 6 1/qQ for some naturals a and q with i 1 6 q 6 Q
and X <

√
N then

S4 = O
((

N/
√

q + N/
√

X +
√

Nq
)

logO(1) N
)

.

You may assume, if you wish, that

∑

x 6n

τ(x)2 = O(n log3n) ;

that if i α ∈ R and t > s are integers then we have the estimate

∣∣∣∣∣

t∑

n= s

exp(2πiαn)

∣∣∣∣∣ 6 min

{
t − s + 1,

1

2‖α‖

}

where ‖α‖ := min{|α − z| : z ∈ Z} ; and that

∑

r 6M

min

{
R,

1

‖θr‖

}
= O

((
MR/q + R + q + M

)
log R

)
.

State the Siegel-Walfisz theorem. Show that for i q 6 logA N and any B > 0 we
have

Λ̂N (a/q) =
µ(q)

φ(q)
N + OA,B

(
N log−BN

)
.

You may assume the Möbius inversion formula.
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