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(a) What does it mean for absolute values on a field K to be equivalent? Let L/K
be an extension of fields and | · | an absolute value on L. Show that | · | is non-archimedean
if and only if its restriction to K is non-archimedean.

(b) Classify the non-archimedean absolute values on Q up to equivalence. Explain
with proof how this result generalises to number fields. [Standard facts about Dedekind

domains and DVR’s may be assumed.]
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(a) Let (K, | · |) be a complete non–archimedean valued field. Let L/K be a finite
extension. Show that there is at most one absolute value on L extending | · | on K.

(b) Let K be the splitting field of a polynomial in Qp[X], say with roots α1, . . . , αn.
Let OK be the valuation ring of K. Which of the following statements are true and which
are false? Justify your answers.

(i) If x ∈ K with TrK/Qp
(x) ∈ Zp then x ∈ OK .

(ii) If x ∈ K with NK/Qp
(x) ∈ Z∗

p then x ∈ O∗

K .

(iii) If β ∈ K with |β − α1| < |β − αi| for all i = 2, . . . , n then α1 ∈ Qp(β).

(iv) If β ∈ K with |β − α1| < |β − αi| for all i = 2, . . . , n then β ∈ Qp(α1).

3

(a) State a version of Hensel’s lemma, and use it to show that there is a unique
prime p for which Q(x, y, z) = 5x 2 + 7y 2 + 13 z 2 = 0 has no non-trivial solutions over
Q p . [ It may help to note that Q(2, 1, 1) = 2 3 5 . ]

(b) Let (K, | · |) be a complete non-archimedean valued field with residue field k.
Show that if K is locally compact then | · | is discrete and k is finite.

(c) Classify the non-archimedean local fields of characteristic p > 0 .
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(a) Let L/K be finite extensions of Qp with residue fields kL and k. Let α ∈ OL

with kL = k(α). Show that if L/K is unramified then OL = OK [α].

(b) Define the different DL/K . Show that if OL = OK [α] then DL/K = (g′(α)) where
g is the minimal polynomial of α over K.

(c) Compute δ(L/K) = vL(DL/K) for L/K the field extensions Qp(ζp)/Qp and
Qp(ζp2−1)/Qp. [Here ζm is a primitive mth root of unity, and vL is the normalised discrete

valuation on L.]
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(a) Write an essay on higher ramification groups.

(b) Let L be the splitting field of f(X) = X 3 + p X + p over Q p . Determine
G = Gal(L/Q p) and the ramification groups (Gn)n>0 for every odd prime p. [ The

discriminant of X 3 + rX + s is −4 r 3
− 27s 2. ]
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