MATHEMATICAL TRIPOS Part III

Thursday, 27 May, 2010 $\,$ 9:00 am to 11:00 am $\,$

PAPER 24

LOCAL FIELDS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

(a) What does it mean for absolute values on a field K to be equivalent? Let L/K be an extension of fields and $|\cdot|$ an absolute value on L. Show that $|\cdot|$ is non-archimedean if and only if its restriction to K is non-archimedean.

(b) Classify the non-archimedean absolute values on \mathbb{Q} up to equivalence. Explain with proof how this result generalises to number fields. [Standard facts about Dedekind domains and DVR's may be assumed.]

$\mathbf{2}$

(a) Let $(K, |\cdot|)$ be a complete non-archimedean valued field. Let L/K be a finite extension. Show that there is at most one absolute value on L extending $|\cdot|$ on K.

(b) Let K be the splitting field of a polynomial in $\mathbb{Q}_p[X]$, say with roots $\alpha_1, \ldots, \alpha_n$. Let \mathcal{O}_K be the valuation ring of K. Which of the following statements are true and which are false? Justify your answers.

- (i) If $x \in K$ with $\operatorname{Tr}_{K/\mathbb{Q}_p}(x) \in \mathbb{Z}_p$ then $x \in \mathcal{O}_K$.
- (ii) If $x \in K$ with $N_{K/\mathbb{Q}_p}(x) \in \mathbb{Z}_p^*$ then $x \in \mathcal{O}_K^*$.
- (iii) If $\beta \in K$ with $|\beta \alpha_1| < |\beta \alpha_i|$ for all i = 2, ..., n then $\alpha_1 \in \mathbb{Q}_p(\beta)$.
- (iv) If $\beta \in K$ with $|\beta \alpha_1| < |\beta \alpha_i|$ for all i = 2, ..., n then $\beta \in \mathbb{Q}_p(\alpha_1)$.

3

(a) State a version of Hensel's lemma, and use it to show that there is a unique prime p for which $Q(x, y, z) = 5x^2 + 7y^2 + 13z^2 = 0$ has no non-trivial solutions over \mathbb{Q}_p . [It may help to note that $Q(2, 1, 1) = 2^3 5$.]

(b) Let $(K, |\cdot|)$ be a complete non-archimedean valued field with residue field k. Show that if K is locally compact then $|\cdot|$ is discrete and k is finite.

(c) Classify the non-archimedean local fields of characteristic $p>0\,.$

Part III, Paper 24

UNIVERSITY OF

 $\mathbf{4}$

(a) Let L/K be finite extensions of \mathbb{Q}_p with residue fields k_L and k. Let $\alpha \in \mathcal{O}_L$ with $k_L = k(\overline{\alpha})$. Show that if L/K is unramified then $\mathcal{O}_L = \mathcal{O}_K[\alpha]$.

(b) Define the different $\mathcal{D}_{L/K}$. Show that if $\mathcal{O}_L = \mathcal{O}_K[\alpha]$ then $\mathcal{D}_{L/K} = (g'(\alpha))$ where g is the minimal polynomial of α over K.

(c) Compute $\delta(L/K) = v_L(\mathcal{D}_{L/K})$ for L/K the field extensions $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ and $\mathbb{Q}_p(\zeta_{p^2-1})/\mathbb{Q}_p$. [Here ζ_m is a primitive mth root of unity, and v_L is the normalised discrete valuation on L.]

$\mathbf{5}$

(a) Write an essay on higher ramification groups.

(b) Let L be the splitting field of $f(X) = X^3 + pX + p$ over \mathbb{Q}_p . Determine $G = \operatorname{Gal}(L/\mathbb{Q}_p)$ and the ramification groups $(G_n)_{n \ge 0}$ for every odd prime p. [The discriminant of $X^3 + rX + s$ is $-4r^3 - 27s^2$.]

END OF PAPER