MATHEMATICAL TRIPOS Part III

Thursday, 3 June, 2010 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 23

IWASAWA THEORY OF ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Let k be a field, and E an elliptic curve defined over k. Let l be a prime number distinct from the characteristic of k. Define the l-adic spaces $T_l(E)$ and $V_l(E)$. Suppose we are given an injection

$$\theta : K \to End_k(E) \bigotimes_{\pi} \mathbb{Q}$$
,

where K is an imaginary quadratic field. We identify K with $\theta(K)$, and define

$$K_l = K \bigotimes_{\mathbb{O}} \mathbb{Q}_l , \ R = K \cap End_k(E) , \ R_l = R \bigotimes_{\mathbb{Z}} \mathbb{Z}_l .$$

Prove that (i) $V_l(E)$ is a free K_l -module of rank 1, (ii) an element ϕ of K_l maps $T_l(E)$ into itself if and only if ϕ belongs to R_l , and (iii) the image of the absolute Galois graph of k in the group of \mathbb{Z}_l – automorphisms of $T_l(E)$ is abelian.

$\mathbf{2}$

Let p be any prime number, and let I be the ring of integers of the completion of the maximal unramified extension of \mathbb{Q}_p . Let G be a profinite abelian group. Define what is meant by an I-valued measure on G. Define the Iwasawa algebra of G with coefficients in I, and show that it can be identified with the ring of I-valued measures on G.

3

Let E be the elliptic curve over \mathbb{Q} defined by

$$E : y^2 = x^3 - x$$
.

Prove that $End_{\mathbb{Q}}(E) = \mathbb{Z}$. Let $K = \mathbb{Q}(i)$, where $i^2 = -1$. Prove that $End_K(E) = \mathbb{Z}[i]$. Let $\gamma_2 = (1+i)\mathbb{Z}[i]$. Show that no fourth root of unity, distinct from 1, is congruent to $1 \mod \gamma_2^3$. Write down explicitly the Grossencharacter of E over K. If γ is any prime ideal of K distinct from γ_2 , and $\pi = \psi_E(\gamma)$, where ψ_E is the Grossencharacter of E over K, let $[\pi](t)$, where t = -x/y, be the endomorphism of the formal group of E at γ defined by π . Prove that

$$[\pi](t) \equiv t^{N\gamma} \mod \gamma ,$$

where $N\gamma$ is the cardinality of $\mathbb{Z}[i]/\gamma$.

$\mathbf{4}$

Write an essay on the proof of the existence of a Grossencharacter for any elliptic curve with complex multiplication, defined over a number field.

CAMBRIDGE

 $\mathbf{5}$

Write an essay on the one variable main conjecture for elliptic curves with complex multiplication, discussing, in particular, the construction of the relevant p-adic L-function.

END OF PAPER