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ELLIPTIC CURVES

Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

E denotes an elliptic curve, Fq the field with q elements,
Qp the field of p-adic numbers and #X the cardinality of X.
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(a) Let E be an elliptic curve over an algebraically closed field k. Prove that E is
isomorphic to an elliptic curve in (generalised) Weierstrass form.

Prove that P 7→ (P ) − (O) defines a bijection between E and Pic0E.

(b) Let Λ ⊂ C be a lattice. Show that the field of elliptic functions with respect to Λ
is generated over C by the Weierstrass ℘-function and its derivative. [You may use

the standard properties of elliptic functions, provided you state them explicitly.]

2

Let E/Fq be an elliptic curve.

(a) Define the qth power Frobenius map E → E . Define the zeta-function ZE/Fq
(T ),

and prove that it is a rational function of T .

(b) Show that E : y2 = x3 + x2 + x + 1 defines an elliptic curve over F3 and determine
#E(F27).

[You may use the properties of endomorphisms of elliptic curves, provided you state them

explicitly.]

3

(a) Define what is meant by a (one-parameter commutative) formal group over a ring
R and by a homomorphism between two formal groups.

If h(T ) = aT + . . . is such a homomorphism, prove that h is an isomorphism if and
only if a ∈ R×.

(b) Suppose E/Q is an elliptic curve with good reduction at p = 2, and at p = 5 the
reduced curve has #Ẽ(F5) = 3 . Show that E has good reduction at 5 and that the
torsion subgroup E(Q)tors is cyclic of order at most 5. (You should carefully state
any results that you use.)
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Let E/Q : y2 = x(x + 5)(x − 5) ; note that ∆E = 2656 and (−4, 6)∈E(Q).

(a) Explain why the given equation defines a global minimal Weierstrass model over Q,
and list the primes of bad reduction for E.

(b) Prove that E(Q)tors ∼= Z/2Z × Z/2Z; you may use the fact that #Ẽ(F3) = 4 and
#Ẽ(F7) = 8 without proof.

(c) Show that E(Q5)/2E(Q5) ∼= (Z/2Z)2 , all coming from E/E0. Compute the image
of the Kummer map

E(Q5)/2E(Q5) →֒ Q×
5
/(Q×

5
)2 × Q×

5
/(Q×

5
)2 .

in terms of the representatives {1, 2, 5, 10} of Q×
5
/(Q×

5
)2 ; you may use the fact that√

−1 ∈ Q5 without proof.

(d) Using the Kummer map over Q5, R and Q, prove that E/Q has Mordell-Weil rank
1.
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