MATHEMATICAL TRIPOS Part III

Friday, 4 June, 2010 9:00 am to 12:00 am

PAPER 22

ELLIPTIC CURVES

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

E denotes an elliptic curve, \mathbb{F}_q the field with q elements, \mathbb{Q}_p the field of p-adic numbers and #X the cardinality of X.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

- 1
- (a) Let E be an elliptic curve over an algebraically closed field k. Prove that E is isomorphic to an elliptic curve in (generalised) Weierstrass form.

Prove that $P \mapsto (P) - (O)$ defines a bijection between E and Pic⁰E.

(b) Let $\Lambda \subset \mathbb{C}$ be a lattice. Show that the field of elliptic functions with respect to Λ is generated over \mathbb{C} by the Weierstrass \wp -function and its derivative. [You may use the standard properties of elliptic functions, provided you state them explicitly.]

$\mathbf{2}$

Let E/\mathbb{F}_q be an elliptic curve.

- (a) Define the qth power Frobenius map $E \to E$. Define the zeta-function $Z_{E/\mathbb{F}_q}(T)$, and prove that it is a rational function of T.
- (b) Show that $E: y^2 = x^3 + x^2 + x + 1$ defines an elliptic curve over \mathbb{F}_3 and determine $\#E(\mathbb{F}_{27})$.

[You may use the properties of endomorphisms of elliptic curves, provided you state them explicitly.]

3

(a) Define what is meant by a (one-parameter commutative) formal group over a ring R and by a homomorphism between two formal groups.

If $h(T) = aT + \dots$ is such a homomorphism, prove that h is an isomorphism if and only if $a \in \mathbb{R}^{\times}$.

(b) Suppose E/\mathbb{Q} is an elliptic curve with good reduction at p = 2, and at p = 5 the reduced curve has $\#\tilde{E}(\mathbb{F}_5) = 3$. Show that E has good reduction at 5 and that the torsion subgroup $E(\mathbb{Q})_{\text{tors}}$ is cyclic of order at most 5. (You should carefully state any results that you use.)

UNIVERSITY OF

 $\mathbf{4}$

Let $E/\mathbb{Q}: y^2 = x(x+5)(x-5);$ note that $\Delta_E = 2^6 5^6$ and $(-4,6) \in E(\mathbb{Q}).$

- (a) Explain why the given equation defines a global minimal Weierstrass model over \mathbb{Q} , and list the primes of bad reduction for E.
- (b) Prove that $E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$; you may use the fact that $\#\tilde{E}(\mathbb{F}_3) = 4$ and $\#\tilde{E}(\mathbb{F}_7) = 8$ without proof.
- (c) Show that $E(\mathbb{Q}_5)/2E(\mathbb{Q}_5) \cong (\mathbb{Z}/2\mathbb{Z})^2$, all coming from E/E_0 . Compute the image of the Kummer map

 $E(\mathbb{Q}_5)/2E(\mathbb{Q}_5) \hookrightarrow \mathbb{Q}_5^{\times}/(\mathbb{Q}_5^{\times})^2 \times \mathbb{Q}_5^{\times}/(\mathbb{Q}_5^{\times})^2.$

in terms of the representatives $\{1, 2, 5, 10\}$ of $\mathbb{Q}_5^{\times}/(\mathbb{Q}_5^{\times})^2$; you may use the fact that $\sqrt{-1} \in \mathbb{Q}_5$ without proof.

(d) Using the Kummer map over \mathbb{Q}_5 , \mathbb{R} and \mathbb{Q} , prove that E/\mathbb{Q} has Mordell-Weil rank 1.

END OF PAPER