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Compute H∗(X) for the following spaces X:

(a) X is the space obtained by identifying opposite sides of a regular hexagon (the
closure of the shaded region) as shown in the figure.

(b) X is the complement of Sm in Sn (m < n), where

Sn = {(x1, . . . , xn+1) ∈ R
n+1 |

n+1∑

i=1

x2
i = 1}

Sm = {(x1, . . . , xm+1, 0, . . . , 0) ∈ R
n+1 |

m+1∑

i=1

x2
i = 1}

(c) X = T 2 × [0, 1]/ ∼ , where (x, 1) ∼ (f(x), 0) and f : T 2 → T 2 is defined by
identifying T 2 with R

2/Z
2, and setting f(x, y) = (2x + y,−x).
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Suppose that (C∗, dC) and (D∗, dD) are finitely generated free chain complexes
defined over Z, and that f : C∗ → D∗ is a chain map. Let Mi = Ci−1 ⊕ Di, and define
df : Mi → Mi−1 by

df (x, y) = (dCx, (−1)if(x) + dDy) .

(a) Show that (M,df ) is a chain complex, and that H∗(M) = 0 if and only if the map
f∗ : H∗(C) → H∗(D) is an isomorphism.

(b) Show that if f∗ : H∗(C ⊗Z/p) → H∗(D ⊗Z/p) is an isomorphism for each prime p,
then H∗(C) ∼= H∗(D).

3

Let X = S2 × S2, and let Y = X × X . Compute H∗(Y ). Give an explicit family
of submanifolds Si of Y with the property that [Si] · [Si] = 0 for each i and {[Si]} is a
basis for H4(Y ).

Let ∆ ⊂ Y be the set of points of the form (x, x) for x ∈ X . Express [∆] ∈ H4(Y )
in terms of your basis. What is the self-intersection [∆] · [∆]? (Give Y the orientation
induced by fixing an orientation on X and taking the product orientation on Y = X×X .)

4

(a) For which values of n is there a map f : RP
n
×RP

n
→ RP

2n for which the induced
map f∗ : H2n(RP

n
× RP

n; Z/2) → H2n(RP
2n; Z/2) is an isomorphism?

(b) Let f : S2
× S2

× S2
→ CP

3 be a map of degree d > 0 . What is the smallest
possible value of d? Construct an example of a map with this degree.
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Given γ : Sn−1
→ SO(k), explain how γ can be used to construct an oriented k-

dimensional vector bundle Vγ over Sn. Construct an element fγ ∈ πr(S
s) (for appropriate

values of r and s) which vanishes if and only if Vγ has a non-vanishing section.

If k > n, show that Vγ can be decomposed as a direct sum Vγ = V ′
⊕ R, where R is a

trivial 1-dimensional bundle over Sn. (You may assume πr(S
s) = 0 for r < s.) Show that

the map πr(SO(s)) → πr(SO(s + 1)) induced by the inclusion is a surjection for r < s.

END OF PAPER
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