MATHEMATICAL TRIPOS Part III

Tuesday, 1 June, 2010 $\,$ 1:30 pm to 4:30 pm

PAPER 17

ALGEBRAIC TOPOLOGY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Compute $H_*(X)$ for the following spaces X:

(a) X is the space obtained by identifying opposite sides of a regular hexagon (the closure of the shaded region) as shown in the figure.

(b) X is the complement of S^m in S^n (m < n), where

$$S^{n} = \{(x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_{i}^{2} = 1\}$$
$$S^{m} = \{(x_{1}, \dots, x_{m+1}, 0, \dots, 0) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{m+1} x_{i}^{2} = 1\}$$

(c) $X = T^2 \times [0,1]/\sim$, where $(x,1) \sim (f(x),0)$ and $f : T^2 \to T^2$ is defined by identifying T^2 with $\mathbb{R}^2/\mathbb{Z}^2$, and setting f(x,y) = (2x + y, -x).

UNIVERSITY OF CAMBRIDGE

 $\mathbf{2}$

Suppose that (C_*, d_C) and (D_*, d_D) are finitely generated free chain complexes defined over \mathbb{Z} , and that $f : C_* \to D_*$ is a chain map. Let $M_i = C_{i-1} \oplus D_i$, and define $d_f : M_i \to M_{i-1}$ by

$$d_f(x,y) = (d_C x, (-1)^i f(x) + d_D y).$$

- (a) Show that (M, d_f) is a chain complex, and that $H_*(M) = 0$ if and only if the map $f_* : H_*(C) \to H_*(D)$ is an isomorphism.
- (b) Show that if $f_* : H_*(C \otimes \mathbb{Z}/p) \to H_*(D \otimes \mathbb{Z}/p)$ is an isomorphism for each prime p, then $H_*(C) \cong H_*(D)$.

3

Let $X = S^2 \times S^2$, and let $Y = X \times X$. Compute $H_*(Y)$. Give an explicit family of submanifolds S_i of Y with the property that $[S_i] \cdot [S_i] = 0$ for each i and $\{[S_i]\}$ is a basis for $H_4(Y)$.

Let $\Delta \subset Y$ be the set of points of the form (x, x) for $x \in X$. Express $[\Delta] \in H_4(Y)$ in terms of your basis. What is the self-intersection $[\Delta] \cdot [\Delta]$? (Give Y the orientation induced by fixing an orientation on X and taking the product orientation on $Y = X \times X$.)

4

- (a) For which values of n is there a map $f : \mathbb{RP}^n \times \mathbb{RP}^n \to \mathbb{RP}^{2n}$ for which the induced map $f_* : H_{2n}(\mathbb{RP}^n \times \mathbb{RP}^n; \mathbb{Z}/2) \to H_{2n}(\mathbb{RP}^{2n}; \mathbb{Z}/2)$ is an isomorphism?
- (b) Let $f: S^2 \times S^2 \times S^2 \to \mathbb{CP}^3$ be a map of degree d > 0. What is the smallest possible value of d? Construct an example of a map with this degree.

UNIVERSITY OF

 $\mathbf{5}$

Given $\gamma: S^{n-1} \to SO(k)$, explain how γ can be used to construct an oriented kdimensional vector bundle V_{γ} over S^n . Construct an element $f_{\gamma} \in \pi_r(S^s)$ (for appropriate values of r and s) which vanishes if and only if V_{γ} has a non-vanishing section.

If k > n, show that V_{γ} can be decomposed as a direct sum $V_{\gamma} = V' \oplus \mathbb{R}$, where \mathbb{R} is a trivial 1-dimensional bundle over S^n . (You may assume $\pi_r(S^s) = 0$ for r < s.) Show that the map $\pi_r(SO(s)) \to \pi_r(SO(s+1))$ induced by the inclusion is a surjection for r < s.

END OF PAPER