MATHEMATICAL TRIPOS Part III

Monday, 7 June, 2010 1:30 pm to 4:30 pm

PAPER 16

ALGEBRAIC GEOMETRY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Give the definitions of locally ringed spaces and morphisms between such spaces.

Let A and B be rings (commutative with identity element as always). Show that any ring homomorphism $A \longrightarrow B$ naturally induces a morphism

 $(Y = \operatorname{Spec} B, \mathcal{O}_Y) \longrightarrow (X = \operatorname{Spec} A, \mathcal{O}_X)$

as locally ringed spaces. Conversely, show that any morphism

 $(Y = \text{Spec } B, \mathcal{O}_Y) \longrightarrow (X = \text{Spec } A, \mathcal{O}_X)$

as locally ringed spaces is induced by a ring homomorphism $A \longrightarrow B$.

Moreover, show that $A \longrightarrow B$ is surjective if and only if the corresponding $f: Y \longrightarrow X$ is a homeomorphism onto a closed subset of X with $\mathcal{O}_X \longrightarrow f_*\mathcal{O}_Y$ surjective.

[You may assume without proof that $(X = \text{Spec } A, \mathcal{O}_X)$ and $(Y = \text{Spec } B, \mathcal{O}_Y)$ are locally ringed spaces.]

$\mathbf{2}$

Give the definition of a proper morphism of schemes, and state the valuative criterion of properness without proof. Let $f: X \longrightarrow Y$ and $g: Y \to Z$ be morphisms of Noetherian schemes. Show that

(i) f is proper if it is a finite morphism;

(ii) the composition gf is proper if both f and g are proper;

(iii) if gf is proper and g is separated, then f is proper;

(iv) if gf is proper, f is surjective, and g is separated and of finite type, then g is proper;

(v) if X = Spec B, Y = Spec A and if f is proper, then f is a finite morphism. [Here you may assume that B is a finitely generated A-algebra.]

Part III, Paper 16

2

CAMBRIDGE

3

3

(i) Let X = Spec A, and let M and N be two A-modules. Show that $\text{Hom}_{\mathcal{O}_X}(\tilde{M}, \tilde{N}) \simeq \text{Hom}_A(M, N).$

(ii) Let X be a scheme and \mathcal{F} an \mathcal{O}_X -module. Give the proof of the following theorem: \mathcal{F} is quasi-coherent if and only if for any open affine subscheme U = Spec A there is an A-module M such that $\mathcal{F}|_U \simeq \tilde{M}$.

(iii) Let X be a noetherian scheme and $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{E} \to 0$ an exact sequence of \mathcal{O}_X -modules. Show that if \mathcal{F} and \mathcal{E} are quasi-coherent, then \mathcal{G} is also quasi-coherent.

(iv) Give an example, with justification, of a scheme X and coherent sheaves \mathcal{F} and \mathcal{G} on X such that $\mathcal{F}_x \simeq \mathcal{G}_x$ as \mathcal{O}_x -modules for every $x \in X$ but such that \mathcal{F} and \mathcal{G} are not isomorphic as \mathcal{O}_X -modules.

$\mathbf{4}$

(i) Give the proof of the following theorem: if (X, \mathcal{O}_X) is a ringed space and \mathcal{F} a flasque \mathcal{O}_X -module, then $H^p(X, \mathcal{F}) = 0$ for any p > 0.

(ii) Let $X = \mathbb{A}_k^n$ where k is a field, and let \mathcal{F} be the constant sheaf defined by the function field K of X. Compute the cohomology groups $H^p(X, \mathcal{F})$.

(iii) Let X be a reduced Noetherian scheme. Show that X is affine if and only if each irreducible component Y of X is affine. Here the scheme structure on Y is the closed subscheme structure induced by the scheme structure on X so that Y becomes an integral scheme, and near the generic point of Y, X and Y are isomorphic.

[You may use the fact that for any morphism $f: Z \longrightarrow X$ of schemes and \mathcal{O}_X -module \mathcal{G} , there is a natural morphism $\mathcal{G} \longrightarrow f_*f^*\mathcal{G}$.]

UNIVERSITY OF

 $\mathbf{5}$

(i) Give an example, with justification, of a projective morphism $f: X \longrightarrow Y$ of schemes, and an exact sequence

4

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0$$

of coherent sheaves on X such that the induced sequence

$$0 \longrightarrow f_* \mathcal{F} \longrightarrow f_* \mathcal{G} \longrightarrow f_* \mathcal{H} \longrightarrow 0$$

is not exact.

(ii) Let X be the closed subscheme of $\mathbb{P}_k^2 = \operatorname{Proj} k[t_0, t_1, t_2]$ defined by the ideal of a homogeneous polynomial F of degree d > 0 where k is a field. Show that $\dim_k H^0(X, \mathcal{O}_X) = 1$ and $\dim_k H^1(X, \mathcal{O}_X) = \frac{1}{2}(d-1)(d-2)$.

(iii) Give an example of a scheme X, an open affine covering $\mathcal{U} = (U_i)_{i \in I}$ and a sheaf \mathcal{F} on X such that $\check{H}^1(\mathcal{U}, \mathcal{F}) \neq H^1(X, \mathcal{F})$, and justify your answer.

END OF PAPER