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1

Give the definitions of locally ringed spaces and morphisms between such spaces.

Let A and B be rings (commutative with identity element as always). Show that
any ring homomorphism A −→ B naturally induces a morphism

(Y = Spec B,OY ) −→ (X = Spec A,OX )

as locally ringed spaces. Conversely, show that any morphism

(Y = Spec B,OY ) −→ (X = Spec A,OX )

as locally ringed spaces is induced by a ring homomorphism A −→ B.

Moreover, show that A −→ B is surjective if and only if the corresponding
f : Y −→ X is a homeomorphism onto a closed subset of X with OX −→ f∗OY surjective.

[You may assume without proof that (X = Spec A, OX) and (Y = Spec B, OY ) are

locally ringed spaces.]

2

Give the definition of a proper morphism of schemes, and state the valuative criterion
of properness without proof. Let f : X −→ Y and g : Y → Z be morphisms of Noetherian
schemes. Show that

(i) f is proper if it is a finite morphism;

(ii) the composition gf is proper if both f and g are proper;

(iii) if gf is proper and g is separated, then f is proper;

(iv) if gf is proper, f is surjective, and g is separated and of finite type, then g is
proper;

(v) if X = Spec B, Y = Spec A and if f is proper, then f is a finite morphism.
[Here you may assume that B is a finitely generated A-algebra.]
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(i) Let X = Spec A, and let M and N be two A-modules. Show that
HomOX

(M̃ , Ñ) ≃ HomA(M,N).

(ii) Let X be a scheme and F an OX-module. Give the proof of the following
theorem: F is quasi-coherent if and only if for any open affine subscheme U = Spec A

there is an A-module M such that F|U ≃ M̃ .

(iii) Let X be a noetherian scheme and 0 → F → G → E → 0 an exact sequence of
OX -modules. Show that if F and E are quasi-coherent, then G is also quasi-coherent.

(iv) Give an example, with justification, of a scheme X and coherent sheaves F and
G on X such that Fx ≃ Gx as Ox-modules for every x ∈ X but such that F and G are not
isomorphic as OX -modules.

4

(i) Give the proof of the following theorem: if (X,OX ) is a ringed space and F a
flasque OX -module, then Hp(X,F) = 0 for any p > 0.

(ii) Let X = A
n
k where k is a field, and let F be the constant sheaf defined by the

function field K of X. Compute the cohomology groups Hp(X,F).

(iii) Let X be a reduced Noetherian scheme. Show that X is affine if and only if
each irreducible component Y of X is affine. Here the scheme structure on Y is the closed
subscheme structure induced by the scheme structure on X so that Y becomes an integral
scheme, and near the generic point of Y , X and Y are isomorphic.

[You may use the fact that for any morphism f : Z −→ X of schemes and

OX -module G, there is a natural morphism G −→ f∗f
∗G.]
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(i) Give an example, with justification, of a projective morphism f : X −→ Y of
schemes, and an exact sequence

0 −→ F −→ G −→ H −→ 0

of coherent sheaves on X such that the induced sequence

0 −→ f∗F −→ f∗G −→ f∗H −→ 0

is not exact.

(ii) Let X be the closed subscheme of P
2

k
= Proj k[t0, t1, t2] defined by the

ideal of a homogeneous polynomial F of degree d > 0 where k is a field. Show that
dimk H0(X,OX ) = 1 and dimk H1(X,OX ) = 1

2
(d − 1)(d − 2).

(iii) Give an example of a scheme X, an open affine covering U = (Ui)i∈I and a
sheaf F on X such that Ȟ1(U ,F) 6= H1(X,F), and justify your answer.
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