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(a) Let φt be a smooth flow on a closed manifold. Define the Anosov property for
φt. Give two different constructions of Anosov flows on 3-manifolds.

(b) Let F be the vector field of φt and f : N → R any positive smooth function.
Show that if φt is Anosov, then the flow of fF is also Anosov. [If Es is the stable bundle

of φt, show that the stable bundle of the flow of fF will have the form

{v + λ(x, v)F (x) : v ∈ Es(x)}

for some continuous function λ depending linearly in v. Alternatively, you may use a result

that characterises Anosov flows in terms of certain continuous quadratic forms, provided

it is clearly stated. ]

2

(a) State the Livsic Theorem for a transitive Anosov flow.

(b) Let M be a closed oriented surface with a Riemannian metric of negative
curvature. Let SM be its unit sphere bundle, X the geodesic vector field on SM , and V

the vertical vector field. Suppose β is a symmetric 2-tensor such that

∫ T

0
βγ(t)(γ̇(t), γ̇(t)) dt = 0

for every closed geodesic γ : [0, T ] → M . Show that there is a smooth function u : SM → R

such that X(u)(x, v) = βx(v, v) for all (x, v) ∈ SM . Moreover, if we let ϕ := V 2(u) + u

show that ϕ satisfies V X(ϕ) = −2H(ϕ), where H = [V,X].

(c) Assume the integral identity

∫
SM

2H(ϕ)V X(ϕ) dµ =

∫
SM

(X(ϕ))2 dµ +

∫
SM

(H(ϕ))2 dµ −

∫
SM

K(V ϕ)2 dµ.

where K is the Gaussian curvature, µ the Liouville measure and u : SM → R any smooth
function. Show that a symmetric 2-tensor β as in the previous part must be a potential
2-tensor, that is, there is a smooth vector field Z on M such that

βx(v, v) = 2〈∇vZ(x), v〉.
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(a) Define the scattering relation α of a compact simple Riemannian manifold with
boundary (M,∂M, g).

(b) Let g1 and g2 be two simple metrics on M with the same boundary distance
function. Show that there exists a diffeomorphism ψ : M → M , which is the identity on
the boundary, such that g1 and ψ∗g2 coincide on ∂M (that is, g1(u, v) = ψ∗g2(u, v) for all
u, v ∈ TxM and all x ∈ ∂M).

(c) Let g1 and g2 be two simple metrics such that they have the same boundary
distance function and they agree on ∂M . Show g1 and g2 have the same scattering relation.

4

(a) Let N be a closed oriented 3-manifold and E a codimension one subbundle of
TN of class C2 which is transversally orientable and integrable. Define the Godbillon-Vey

invariant gv(E) and show that your definition is independent of the choices made.

(b) Compute the Godbillon-Vey invariant of the weak stable bundle of the geodesic
flow of a closed orientable surface of constant curvature −1.

5

(a) Let (M,g) be a closed oriented Riemannian surface with unit sphere bundle
SM . Consider the flow φt on SM defined by the differential equation

Dγ̇

dt
= f(γ(t)) iγ̇,

where i indicates rotation by π/2 according to the orientation of the surface, γ : R → M
and f : M → R is a given smooth function. Show that φt preserves the Liouville volume
form of SM .

(b) Suppose that the flow φt in the previous part is Anosov and

∫
M

f Ωa = 0,

where Ωa is the area form. Show that φt preserves a smooth contact form if and only if
f is identically zero. [You may use results on the kernel of the X-ray transform provided

they are clearly stated.]
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