MATHEMATICAL TRIPOS Part III

Monday, 7 June, 2010 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 14

THE X-RAY TRANSFORM IN GEOMETRY AND DYNAMICS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Let ϕ_t be a smooth flow on a closed manifold. Define the Anosov property for ϕ_t . Give two different constructions of Anosov flows on 3-manifolds.

 $\mathbf{2}$

(b) Let F be the vector field of ϕ_t and $f: N \to \mathbb{R}$ any positive smooth function. Show that if ϕ_t is Anosov, then the flow of fF is also Anosov. [If E^s is the stable bundle of ϕ_t , show that the stable bundle of the flow of fF will have the form

$$\{v + \lambda(x, v)F(x) : v \in E^s(x)\}$$

for some continuous function λ depending linearly in v. Alternatively, you may use a result that characterises Anosov flows in terms of certain continuous quadratic forms, provided it is clearly stated.]

$\mathbf{2}$

(a) State the Livsic Theorem for a transitive Anosov flow.

(b) Let M be a closed oriented surface with a Riemannian metric of negative curvature. Let SM be its unit sphere bundle, X the geodesic vector field on SM, and V the vertical vector field. Suppose β is a symmetric 2-tensor such that

$$\int_0^T \beta_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t)) \, dt = 0$$

for every closed geodesic $\gamma : [0,T] \to M$. Show that there is a smooth function $u : SM \to \mathbb{R}$ such that $X(u)(x,v) = \beta_x(v,v)$ for all $(x,v) \in SM$. Moreover, if we let $\varphi := V^2(u) + u$ show that φ satisfies $VX(\varphi) = -2H(\varphi)$, where H = [V,X].

(c) Assume the integral identity

$$\int_{SM} 2H(\varphi) V X(\varphi) \, d\mu = \int_{SM} (X(\varphi))^2 \, d\mu + \int_{SM} (H(\varphi))^2 \, d\mu - \int_{SM} K(V\varphi)^2 \, d\mu.$$

where K is the Gaussian curvature, μ the Liouville measure and $u: SM \to \mathbb{R}$ any smooth function. Show that a symmetric 2-tensor β as in the previous part must be a potential 2-tensor, that is, there is a smooth vector field Z on M such that

$$\beta_x(v,v) = 2\langle \nabla_v Z(x), v \rangle.$$

CAMBRIDGE

3

(a) Define the scattering relation α of a compact simple Riemannian manifold with boundary $(M, \partial M, g)$.

(b) Let g_1 and g_2 be two simple metrics on M with the same boundary distance function. Show that there exists a diffeomorphism $\psi: M \to M$, which is the identity on the boundary, such that g_1 and $\psi^* g_2$ coincide on ∂M (that is, $g_1(u, v) = \psi^* g_2(u, v)$ for all $u, v \in T_x M$ and all $x \in \partial M$).

(c) Let g_1 and g_2 be two simple metrics such that they have the same boundary distance function and they agree on ∂M . Show g_1 and g_2 have the same scattering relation.

$\mathbf{4}$

(a) Let N be a closed oriented 3-manifold and E a codimension one subbundle of TN of class C^2 which is transversally orientable and integrable. Define the *Godbillon-Vey* invariant gv(E) and show that your definition is independent of the choices made.

(b) Compute the Godbillon-Vey invariant of the weak stable bundle of the geodesic flow of a closed orientable surface of constant curvature -1.

$\mathbf{5}$

(a) Let (M, g) be a closed oriented Riemannian surface with unit sphere bundle SM. Consider the flow ϕ_t on SM defined by the differential equation

$$\frac{D\dot{\gamma}}{dt} = f(\gamma(t))\,i\dot{\gamma},$$

where *i* indicates rotation by $\pi/2$ according to the orientation of the surface, $\gamma : \mathbb{R} \to M$ and $f : M \to \mathbb{R}$ is a given smooth function. Show that ϕ_t preserves the Liouville volume form of SM.

(b) Suppose that the flow ϕ_t in the previous part is Anosov and

$$\int_M f \,\Omega_a = 0,$$

where Ω_a is the area form. Show that ϕ_t preserves a smooth contact form if and only if f is identically zero. [You may use results on the kernel of the X-ray transform provided they are clearly stated.]

END OF PAPER

Part III, Paper 14