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Given holomorphic functions f1, . . . , fn on a polydisc ∆n ⊂ C
n centred at a point

a = (a1, . . . , an) with ∂fi/∂zj = ∂fj/∂zi for all i, j, show that there exists a holomorphic
function f on ∆n such that ∂f/∂zi = fi − fi(a) for all i. [Hint: Define f(z1, . . . , zn) as

a certain sum of n integrals; standard facts from Analysis may be assumed.]

Let M be a complex manifold of dimension n. If Ω 1

M denotes the sheaf of
holomorphic 1-forms, and Ω̃1

M denotes the subsheaf of closed holomorphic 1-forms, deduce
that there is a short exact sequence of sheaves

0 → C →֒ OM
∂
−→ Ω̃ 1

M → 0 .

If M is now assumed to be compact, show that any global complex-valued function
f with ∂∂̄f = 0 must be constant. [You may assume that for any non-constant harmonic

function g on a domain in C, there are no local maxima for |g|.]

Still assuming that M is compact, suppose that θ is a non-zero smooth (n, 0)-form
on M ; explain why the integral over M of the (n, n)-form θ ∧ θ̄ is non-zero. If ψ denotes
a holomorphic (n− 1)-form on M , deduce that ψ is closed.

Suppose now that n = 2 , so that M is a compact complex surface. Show that there
is an inclusion H0(M,Ω1

M ) →֒ H1

DR
(M,C) into the first de Rham cohomology group.

Prove that
H0(M,Ω 1

M ) ∩ H0(M,Ω 1

M ) = 0

in H 1

DR
(M,C), and hence that 2h1,0 6 b1 , where b1 = dimC H 1

DR
(M,C) . From the above

short exact sequence of sheaves, prove furthermore that b1 6 h1,0 + h0,1 , and hence that
h1,0 6 h0,1 . Give an example of a compact complex surface for which this last inequality
is strict.
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Prove Cartan’s equation relating the curvature and connection matrices (with
respect to some local frame) of a connection on a smooth complex vector bundle, namely

Θ = dθ − θ ∧ θ . (†)

If E is a hermitian holomorphic vector bundle of rank r over a complex mani-
fold M , describe the defining properties for the Chern connection on E, and prove that
there exists a unique connection with these properties. With the curvature considered as
Θ ∈ A1,1(End(E)) = A0,1(Ω1(End(E))), where End(E) = Hom(E,E) is the endomor-
phism bundle, show that ∂̄ Θ = 0, and hence that Θ determines a class Ψ in the Dolbeault
cohomology group H1(M,Ω1(End(E)).

Suppose now that we have local holomorphic frames e
(α)
1 , . . . , e

(α)
r for E over Uα,

with U = {Uα} an open cover of M . Suppose the transition functions of E with respect
to U are represented by the transpose of matrices gαβ; that is the frames transform via
the relation

e
(β)
i =

∑

j

(gαβ)ij e
(α)
j .

Show that Ψ corresponds to a Čech cohomology class (σαβ) ∈ H1(U ,Ω1(End(E)), where
σαβ is the section of Ω1(End(E)) over Uα ∩ Uβ represented with respect to the local

holomorphic frame e
(β)
1 , . . . , e

(β)
r by the matrix of holomorphic 1-forms (∂gαβ) g−1

αβ . Hence
show that Ψ depends on neither the choice of hermitian metric nor local trivialization for
E. Show also that there is a corresponding well-defined class

Ψ(k) ∈ Hk(M,Ωk(End(E)) ,

and hence by contraction a class

tr(Ψ(k)) ∈ Hk(M,Ωk) ,

for all k > 0 . When M is compact and Kähler, explain why ( i
2π

)k tr(Ψ(k)) determines a
real class in H2k(M, C).
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State the defining property of the Hodge ∗-operator, ∗ : A p, q
M → A

n−p,n−q
M , on the

sheaf of (p, q)-forms on an n-dimensional complex manifold M equipped with a hermitian
metric. For M compact, explain briefly how this determines a hermitian inner-product
on the global (p, q)-forms Ap, q(M). State carefully the Hodge theorem concerning the
decomposition of Ap, q(M) by means of the ∂̄-Laplacian ∆∂̄ , and deduce the standard
orthogonal decomposition

Ap, q(M) = H
p, q

∂̄
⊕ ∂̄Ap, q−1

⊕ ∂̄∗Ap, q+1 ,

with the ∂̄-closed forms being the sum of the first two factors. [Standard properties of

∂̄∗ = − ∗ ∂̄∗ may be assumed.]

Suppose now that M is also Kähler; show that ∂∂̄∗+∂̄∗∂ = 0 . [You may assume the

result expressing ∂̄∗ as a certain commutator of operators, provided you state it precisely.]
Define the Laplacians ∆d and ∆∂ , and prove that ∆d = ∆∂ + ∆∂̄ and ∆∂ = ∆∂̄ .

Let η be a ∂̄-exact (p, q)-form (p > 1, q > 1) on a compact Kähler manifold M ;
show that η = ∂̄∂̄∗α for some form α ∈ Ap, q(M) . If η is also ∂-closed, prove that ∂∂̄∗α

is harmonic; by considering the orthogonal decomposition corresponding to ∆∂ , deduce
that ∂̄∗α is ∂-closed. Conclude that such an η can be expressed as η = ∂∂̄φ for some
φ ∈ Ap−1, q−1(M).

Given two Kähler forms ω1 and ω2 on M which define the same de Rham cohomology
class, show that there is a smooth real-valued function f with ω2 = ω1 + i∂∂̄f .
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What is meant by the canonical line bundle KM of a complex manifold M? Let
V ⊂ M be an n-dimensional complex submanifold of an m-dimensional complex manifold
M ; define what is meant by the normal bundle NV/M . State the adjunction formula

relating KV and KM . In the case when V is of codimension one, define the line bundle
[V ] on M . State (without proof) the relation between [V ] and NV/M .

Suppose now E is a holomorphic hermitian vector bundle of rank r on a complex
manifold V , and F ⊂ E is a holomorphic subbundle of rank s, equipped with the induced
hermitian structure. Let π : E → F be the orthogonal projection map (a smooth map
of the holomorphic bundles) and DE denote the Chern connection on E. Show that the
Chern connection DF of F is given by the relation DF = π ◦DE . Choose a local unitary
frame e1, . . . , es for F and extend to a local unitary frame e1, . . . , er for E. With
respect to this unitary frame, show that DE has connection matrix

(

θ1 Āt

−A θ2

)

where θ1 is the connection matrix for DF with respect to e1, . . . , es , and θ2 and A are
matrices of 1-forms. Assuming Cartan’s equation (†) from Question 2 above, find an
expression for the curvature matrix ΘF for F in terms of the curvature matrix ΘE and A.

Let V ⊂ M now be a codimension one submanifold of a complex torus M and L is
a positive line bundle on M . Show that (L⊗ [V ]⊗a)|V is positive for all a > 0 . Assuming
the Kodaira Vanishing Theorem, show that H i(M,L ⊗ [V ]⊗a) = 0 for all i > 0 and
a > 0 .
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