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(i) Let G
(r)
N,p

be the random r-uniform hypergraph with vertex set N in which every r-set

is chosen with probability p, where 0 < p < 1. Show that a.s. G
(r)
N,p

is isomorphic to a

fixed r-uniform hypergraph G
(r)
univ.

(ii) Delete the maximal vertex of each hyperedge E of G
(3)
univ from E to obtain a graph G0.

Show that G0 is isomorphic to G
(2)
univ.
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(i) Prove a concentration of probability inequality for a Lipschitz function on the symmetric
group Sn, considered as a probability space, with Hamming distance.

(ii) Let A and B be non-empty subsets of Sn, and write d(A,B) for their Hamming
distance. Show that

min{|A|, |B|} 6 n! e−d2/8n .

[The results you use should be clearly stated.]
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Let z = (z1, . . . , zn) be a sequence of n points chosen at random in the right-angled
triangle with vertices (0, 0), (1, 0) and (1, 1), and let Ln = Ln(z) be the maximal number
of points zi forming a convex polygon with (0, 0) and (1, 1). [Thus Ln(z) is the maximal ℓ
such that the points (0, 0), zi1 , zi2 , . . . , ziℓ and (1, 1) are the vertices of a convex (ℓ + 2)-
gon.]

(i) Sketch a proof of the fact that the median of the random variable Ln is at most cn1/3

for some c > 0. [You may find it helpful to consider the triangles formed by the tangents
of the hyperbola y = x2 at the points (k/n1/3, k2/n2/3).]

(ii) Let 1 6 b < a be positive integers, and set A = {z : Ln(z) > a} and
B = {z : Ln(z) 6 b}. Show that

dT (A,B) >
a − b√

a
,

where dT (A,B) is the Talagrand distance of the sets A and B.

(iii) Let ω(n) → ∞. Prove that whp Ln is concentrated in an interval of length ω(n)n1/6.
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Let m, n, r and s be positive integers with rm = sn, and let G be an (r, s)-regular
bipartite graph. Thus V (G) is the disjoint union of two sets, U and W , with |U | = m,
|W | = n, every edge of G joins a vertex of U to a vertex of W , every vertex of U has
degree r and every vertex of W has degree s.

(i) Prove that G has at most (2r + 2s − 1)m/s independent sets of vertices.

(ii) Show that if s|m then equality holds for some graph G.

[All results you quote should be stated precisely.]

END OF PAPER

Part III, Paper 12


	Rubric
	1
	2
	3
	4

