MATHEMATICAL TRIPOS Part III

Monday, 7 June, 2010 - 9:00 am to 11:00 am

PAPER 12

PROBABILISTIC COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

(i) Let $G_{\mathbb{N},p}^{(r)}$ be the random *r*-uniform hypergraph with vertex set \mathbb{N} in which every *r*-set is chosen with probability *p*, where $0 . Show that a.s. <math>G_{\mathbb{N},p}^{(r)}$ is isomorphic to a fixed *r*-uniform hypergraph $G_{\text{univ}}^{(r)}$.

(ii) Delete the maximal vertex of each hyperedge E of $G_{\text{univ}}^{(3)}$ from E to obtain a graph G_0 . Show that G_0 is isomorphic to $G_{\text{univ}}^{(2)}$.

$\mathbf{2}$

(i) Prove a concentration of probability inequality for a Lipschitz function on the symmetric group S_n , considered as a probability space, with Hamming distance.

(ii) Let A and B be non-empty subsets of S_n , and write d(A, B) for their Hamming distance. Show that

$$\min\{|A|, |B|\} \leq n! e^{-d^2/8n}$$

[The results you use should be clearly stated.]

3

Let $z = (z_1, \ldots, z_n)$ be a sequence of n points chosen at random in the right-angled triangle with vertices (0,0), (1,0) and (1,1), and let $L_n = L_n(z)$ be the maximal number of points z_i forming a convex polygon with (0,0) and (1,1). [Thus $L_n(z)$ is the maximal ℓ such that the points (0,0), z_{i_1} , z_{i_2} , ..., z_{i_ℓ} and (1,1) are the vertices of a convex $(\ell + 2)$ -gon.]

(i) Sketch a proof of the fact that the median of the random variable L_n is at most $cn^{1/3}$ for some c > 0. [You may find it helpful to consider the triangles formed by the tangents of the hyperbola $y = x^2$ at the points $(k/n^{1/3}, k^2/n^{2/3})$.]

(ii) Let $1 \leq b < a$ be positive integers, and set $A = \{z : L_n(z) \geq a\}$ and $B = \{z : L_n(z) \leq b\}$. Show that

$$d_T(A,B) \ge \frac{a-b}{\sqrt{a}},$$

where $d_T(A, B)$ is the Talagrand distance of the sets A and B.

(iii) Let $\omega(n) \to \infty$. Prove that whp L_n is concentrated in an interval of length $\omega(n)n^{1/6}$.

UNIVERSITY OF

 $\mathbf{4}$

Let m, n, r and s be positive integers with rm = sn, and let G be an (r, s)-regular bipartite graph. Thus V(G) is the disjoint union of two sets, U and W, with |U| = m, |W| = n, every edge of G joins a vertex of U to a vertex of W, every vertex of U has degree r and every vertex of W has degree s.

(i) Prove that G has at most $(2^r + 2^s - 1)^{m/s}$ independent sets of vertices.

(ii) Show that if s|m then equality holds for some graph G.

[All results you quote should be stated precisely.]

END OF PAPER