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1

State and prove Roth’s theorem on arithmetic progressions of length 3, using discrete
Fourier analysis. (You may assume basic facts about the discrete Fourier transform, such
as Parseval’s identity, but other intermediate results should be proved.)

2

(i) State and prove Szemerédi’s regularity lemma.

(ii) Let X and Y be sets of cardinality n, and let f : X × Y → C . Define the U2

norm of f . Show that

|Ex∈X Ey∈Y f(x, y)u(x) v(y)| 6 ‖f‖U2 ‖u‖2 ‖v‖2

for any functions u : X → C and v : Y → C .

3

Proving any facts that you might need concerning the sizes of sumsets, show that

for every C there exists K with the following property: if N is a positive integer and A

is a subset of F
N

2
such that |A + A| 6 C|A| , then there is a subspace V of F

N

2
such that

A ⊂ V and |V | 6 K|A| .
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