MATHEMATICAL TRIPOS Part III

Tuesday, 1 June, 2010 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 10

COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

State and prove the Kruskal-Katona theorem.

Show that a graph with 15 edges may contain 15 copies of K_4 but no more.

$\mathbf{2}$

Let $\mathcal{A}_i = \{A \in [n]^{(r)} : |A \cap [t+2i]| \ge t+i\}$ and $n_k = (r-t+1)(2+(t-1)/k)$. By comparing $\mathcal{A}_{i+1} \setminus \mathcal{A}_i$ with $\mathcal{A}_i \setminus \mathcal{A}_{i+1}$, or otherwise, show that if $n_{k+1} < n < n_k$ then $\max_i |\mathcal{A}_i| = |\mathcal{A}_k|$.

State and prove the Ahlswede-Khachatrian theorem giving the value of M(n, r, t), the maximum size of a *t*-intersecting family $\mathcal{A} \subset [n]^{(r)}$.

[You may use lemmas about compressions preserving t-intersections, and the existence of a generating family on a small ground-set, provided you state them clearly.]

3

What does it mean that an r-uniform hypergraph is strongly (r + t)-saturated?

Show that a strongly (r+t)-saturated *r*-uniform hypergraph of order *n* has at least $\binom{n}{r} - \binom{n-t}{r}$ edges.

Let (R_i, S_i) , $i \in I$ be a family of pairs of subsets with $R_i \in [n]^{(r)}$ and $S_i \in [n]^{(s)}$, such that $R_i \cap S_j \neq \emptyset$ if and only if i = j. Show that if $|I| \ge 2$ then $|I| \le n - r - s + 2$ and that equality can be attained.

[*Hint:* pick $x_i \in R_i \cap S_i$.]

$\mathbf{4}$

State and prove the Sauer-Shelah lemma on families that shatter k-sets.

Let \mathcal{A} be a collection of finite subsets of some infinite set X and, for $Y \subset X$, let $\mathcal{A}_{|Y} = \{Y \cap A : A \in \mathcal{A}\}$. Suppose that, for every $k \ge 1$, there is a set $Y \in X^{(k)}$ with $|\mathcal{A}_{|Y}| \ge 2^{k-1}$. Show that, for every $k \ge 1$, there is a set $Z \in X^{(k)}$ that is shattered by \mathcal{A} .

Must there be an infinite $Z \subset X$ such that $\mathcal{A}_{|Z}$ contains every finite subset of Z?

END OF PAPER