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1

State and prove the Kruskal-Katona theorem.

Show that a graph with 15 edges may contain 15 copies of K4 but no more.

2

Let Ai = {A ∈ [n](r) : |A ∩ [t + 2i]| > t + i} and nk = (r − t + 1)(2 + (t − 1)/k).
By comparing Ai+1 \Ai with Ai \Ai+1 , or otherwise, show that if nk+1 < n < nk then
maxi |Ai| = |Ak| .

State and prove the Ahlswede-Khachatrian theorem giving the value of M(n, r, t),
the maximum size of a t-intersecting family A ⊂ [n](r).

[You may use lemmas about compressions preserving t-intersections, and the exis-

tence of a generating family on a small ground-set, provided you state them clearly.]

3

What does it mean that an r-uniform hypergraph is strongly (r + t)-saturated?

Show that a strongly (r + t)-saturated r-uniform hypergraph of order n has at least
(

n
r

)

−
(

n−t
r

)

edges.

Let (Ri, Si), i ∈ I be a family of pairs of subsets with Ri ∈ [n](r) and Si ∈ [n](s),
such that Ri ∩ Sj 6= ∅ if and only if i = j . Show that if |I| > 2 then |I| 6 n − r − s + 2
and that equality can be attained.

[Hint: pick xi ∈ Ri ∩ Si .]

4

State and prove the Sauer-Shelah lemma on families that shatter k-sets.

Let A be a collection of finite subsets of some infinite set X and, for Y ⊂ X, let

A|Y = {Y ∩ A : A ∈ A} . Suppose that, for every k > 1, there is a set Y ∈ X(k) with

|A|Y | > 2k−1 . Show that, for every k > 1 , there is a set Z ∈ X(k) that is shattered by A .

Must there be an infinite Z ⊂ X such that A|Z contains every finite subset of Z?
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