MATHEMATICAL TRIPOS Part III

Thursday, 27 May, 2010 1:30 pm to 4:30 pm

PAPER 1

LIE GROUPS, LIE ALGEBRAS, AND THEIR REPRESENTATIONS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Define a *derivation* of a Lie algebra \mathfrak{g} over a field k to be a k-linear map $f : \mathfrak{g} \to \mathfrak{g}$ such that f([x,y]) = [f(x),y] + [x,f(y)] for all x, y in \mathfrak{g} . Show that the derivations $\text{Der}(\mathfrak{g})$ form a Lie subalgebra of $\mathfrak{gl}(\mathfrak{g})$. Show that

$$\operatorname{ad}: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$$
$$x \mapsto \operatorname{ad} x$$

is a homomorphism of Lie algebras. Show that the image $ad(\mathfrak{g})$ forms an ideal in $Der(\mathfrak{g})$ (called the ideal of "inner derivations").

$\mathbf{2}$

Let R be an irreducible root system in a real vector space E. Show that E is irreducible as a representation of the Weyl group.

3

Find the dimensions of all weight spaces for the representation $V \otimes \Lambda^2 V$ of the complex Lie algebra $\mathfrak{sl}(n)$. Here $V = \mathbb{C}^n$ denotes the standard representation, and we assume that $n \ge 3$. Find the highest weights of all the irreducible summands of $V \otimes \Lambda^2 V$, as a representation of $\mathfrak{sl}(n)$.

CAMBRIDGE

 $\mathbf{4}$

Let

$$\mathfrak{g} = \mathfrak{sp}(2n) := \{A \in M_{2n}(\mathbf{C}) : AJ + JA^t = 0\},\$$

where J is the $2n \times 2n$ matrix $\begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$.

Let \mathfrak{t} be the space of diagonal matrices in \mathfrak{g} , which is a Cartan subalgebra in \mathfrak{g} .

(a) By decomposing \mathfrak{g} as a t-module, write down the set R of roots of \mathfrak{g} . Choose a set R^+ of positive roots. Write down the set Δ of simple roots, the highest root θ , and ρ (in the notation of the Weyl character formula).

Draw the Dynkin diagram of \mathfrak{g} , and label it by the simple roots.

(b) Show that $\mathfrak{so}(5) \cong \mathfrak{sp}(4)$.

(c) For each root $\alpha \in R$, write the reflection $s_{\alpha} : \mathfrak{t} \to \mathfrak{t}$ explicitly. Determine the Weyl group W, proving your answer.

$\mathbf{5}$

Let H be a closed subgroup of a Lie group G. That is, H is a closed subset of G which is also a subgroup. This problem will show that H is automatically a closed Lie subgroup of G.

(a) Show that either H is discrete or H contains a nontrivial one-parameter subgroup of G.

(b) Let \mathfrak{h} be the set of elements x in the Lie algebra \mathfrak{g} of G such that H contains the one-parameter subgroup of G in the direction x. Show that \mathfrak{h} is an **R**-linear subspace of \mathfrak{g} . More strongly, show that \mathfrak{h} is a Lie subalgebra of \mathfrak{g} .

(c) Show that H is a closed Lie subgroup of G with Lie algebra \mathfrak{h} . [Hint: The main point is to show that H is a smooth submanifold of G.]

END OF PAPER

Part III, Paper 1