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1

Define a derivation of a Lie algebra g over a field k to be a k-linear map f : g → g

such that f([x, y]) = [f(x), y] + [x, f(y)] for all x, y in g. Show that the derivations Der(g)

form a Lie subalgebra of gl(g). Show that

ad : g → gl(g)

x 7→ ad x

is a homomorphism of Lie algebras. Show that the image ad(g) forms an ideal in Der(g)

(called the ideal of “inner derivations”).

2

Let R be an irreducible root system in a real vector space E. Show that E is

irreducible as a representation of the Weyl group.

3

Find the dimensions of all weight spaces for the representation V ⊗ Λ2
V of the

complex Lie algebra sl(n). Here V = C
n denotes the standard representation, and we

assume that n > 3. Find the highest weights of all the irreducible summands of V ⊗Λ2
V ,

as a representation of sl(n).
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4

Let

g = sp(2n) := {A ∈ M2n(C) : AJ + JAt = 0} ,

where J is the 2n × 2n matrix

(

0 −In

In 0

)

.

Let t be the space of diagonal matrices in g, which is a Cartan subalgebra in g.

(a) By decomposing g as a t-module, write down the set R of roots of g. Choose a

set R+ of positive roots. Write down the set ∆ of simple roots, the highest root θ, and ρ

(in the notation of the Weyl character formula).

Draw the Dynkin diagram of g, and label it by the simple roots.

(b) Show that so(5) ∼= sp(4).

(c) For each root α ∈ R, write the reflection sα : t → t explicitly. Determine the

Weyl group W , proving your answer.

5

Let H be a closed subgroup of a Lie group G. That is, H is a closed subset of G

which is also a subgroup. This problem will show that H is automatically a closed Lie

subgroup of G.

(a) Show that either H is discrete or H contains a nontrivial one-parameter subgroup

of G.

(b) Let h be the set of elements x in the Lie algebra g of G such that H contains

the one-parameter subgroup of G in the direction x. Show that h is an R-linear subspace

of g. More strongly, show that h is a Lie subalgebra of g.

(c) Show that H is a closed Lie subgroup of G with Lie algebra h. [Hint: The main

point is to show that H is a smooth submanifold of G.]
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