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1 a) Let 2 6 p < ∞ and n ∈ N. Making use of the inequality

‖f + g‖p
p + ‖f − g‖p

p 6 2p−1
(‖f‖p

p + ‖g‖p
p

)
,

valid for all f, g ∈ Lp(Rn), prove the following statement.

Let K ⊂ Lp(Rn) be closed and convex, and let f 6∈ K. Then there exists h ∈ K
such that

inf
g∈K

‖g − f‖p = ‖h− f‖p . (1)

b) Prove that if h satisfies (??), then

Re
∫
|h(x) − f(x)|p−2 (h(x)− f(x)) (h(x) − g(x))dx 6 0 for all g ∈ K .

[You can make use of the fact that, if one defines N(t) = ‖f + tg‖p
p for f, g ∈ Lp(Rn),

f 6= 0, and t ∈ R, then N(t) is differentiable in t and

d

dt
N(t)|t=0 = 2Re

∫
|f(x)|p−2 f(x) g(x).

]

c) Let 2 6 p < ∞ and 1 < q 6 2 be such that 1/p + 1/q = 1. Using the results
from part a) and b), show that the map φ : Lq(Rn) → (Lp(Rn))∗ defined by φ(u) ≡ φu

for all u ∈ Lq(Rn) and φu(v) =
∫

u(x)v(x) dx for all v ∈ Lp(Rn) defines an isometric
isomorphism. [You have to prove that the map is well defined, that it is linear, that
‖φu‖(Lp)∗ = ‖u‖Lq for every u ∈ Lq(Rn) and that φ is surjective. You can make use of the
Hölder inequality without proving it.]

2 Suppose (Ω,Σ, µ) is a measure space.

a) For 1 6 p 6 ∞, prove the completeness of Lp(Ω, dµ). [You may use the fact that
‖.‖p is a norm as well as the monotone and the dominated convergence theorems without
proof.]

b) Suppose that 1 6 p < q < r 6 ∞. Prove that, for every Cp < ∞, Cr < ∞,
and Cq > 0, there exist ǫ > 0 and M > 0 such that µ({x : |f(x)| > ǫ}) > M for all
f ∈ Lp(Ω, dµ) ∩ Lr(Ω, dµ) such that ‖f‖p 6 Cp, ‖f‖q > Cq, and ‖f‖r 6 Cr.

c) Find examples to show that the conclusion of b) does not necessarily hold true if
the condition ‖f‖p 6 Cp or the condition ‖f‖r 6 Cr is removed. [Hint: you can take Ω = R
and µ to be Lebesgue’s measure.]
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3 a) Assume that n > 3. Suppose that f, fj ∈ H1(Rn) for every j ∈ N are such that
fj → f weakly in H1(Rn) as j →∞. Suppose that Ω ⊂ Rn is a bounded set and that χΩ

denotes the characteristic function of Ω. Show that χΩ fj → χΩ f strongly in Lq(Rn), for
all q < 2n/(n − 2).

b) State and prove the Poincaré inequality for f ∈ W 1,p(Ω), where Ω ⊂ Rn is a
bounded, connected, open set having the cone-property, and where p < n. [In the proof
you can make use of the Rellich-Kondrashov Theorem on general sets having the cone-
property.]

4 a) Suppose that Ω ⊂ Rn is open. Suppose that Tn ∈ D′(Ω) for all n ∈ N, and
T ∈ D′(Ω). What does Tn → T in D′(Ω) mean? How is the distribution ∂xjT defined?
Show that the derivative of a distribution is a distribution. Show that Tn → T implies
that ∂xjTn → ∂xjT in D′(Ω).

b) Explain the meaning of the equation

−∆
1
|x| = 4πδ in D′(R3) . (1)

Prove (??).

c) Consider the sequence of functions on R2:

gn(x) :=
{

cn(1− |x|4)n if |x| 6 1
0 if |x| > 1

with
c−1
n =

∫
|x|61

dxdy (1− |x|4)n

Prove that gn → δ in D′(R2). [Hint: it may be useful to start by finding an upper bound for
the constants cn.]
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5 a) Suppose that Ω ⊂ Rn is open, and let f ∈ L1
loc(Ω) be a real valued function.

What does it mean for f to be subharmonic on Ω? What does it mean for f to be
superharmonic on Ω? What does it mean for f to be harmonic on Ω?

b) Show that, if fn is a sequence of subharmonic functions on Ω, then g(x) =
supn>1 fn(x) is also subharmonic.

If f ∈ L1
loc(Ω) is subharmonic, we proved in class that there exists a unique function

f̃ : Ω → R ∪ {−∞} such that f(x) = f̃(x) for a.e. x ∈ Ω, f̃ is upper semicontinuous, and
f̃ is subharmonic for all x ∈ Ω. This function then satisfies the mean-value inequality for
all x ∈ Ω. You can make use of these facts to answer the two following questions.

c) Show that if f ∈ L1
loc(Ω) is harmonic on Ω and f = f̃ , then f ∈ C∞(Ω).

d) State and prove the strong maximum principle.
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