UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Monday, 1 June, 2009 1:30 pm to 4:30 pm

PAPER 9

METHODS IN ANALYSIS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

2

1

a) Let $2 \leq p < \infty$ and $n \in \mathbb{N}$. Making use of the inequality

$$||f + g||_p^p + ||f - g||_p^p \leq 2^{p-1} \left(||f||_p^p + ||g||_p^p \right),$$

valid for all $f, g \in L^p(\mathbb{R}^n)$, prove the following statement.

Let $K \subset L^p(\mathbb{R}^n)$ be closed and convex, and let $f \notin K$. Then there exists $h \in K$ such that

$$\inf_{q \in K} \|g - f\|_p = \|h - f\|_p.$$
(1)

b) Prove that if h satisfies (??), then

Re
$$\int |h(x) - f(x)|^{p-2} (\overline{h(x)} - \overline{f(x)}) (h(x) - g(x)) dx \leq 0$$
 for all $g \in K$.

[You can make use of the fact that, if one defines $N(t) = ||f + tg||_p^p$ for $f, g \in L^p(\mathbb{R}^n)$, $f \neq 0$, and $t \in \mathbb{R}$, then N(t) is differentiable in t and

$$\frac{d}{dt}N(t)|_{t=0} = 2Re \int |f(x)|^{p-2} \overline{f(x)} g(x).$$

]

c) Let $2 \leq p < \infty$ and $1 < q \leq 2$ be such that 1/p + 1/q = 1. Using the results from part a) and b), show that the map $\phi : L^q(\mathbb{R}^n) \to (L^p(\mathbb{R}^n))^*$ defined by $\phi(u) \equiv \phi_u$ for all $u \in L^q(\mathbb{R}^n)$ and $\phi_u(v) = \int u(x)v(x) dx$ for all $v \in L^p(\mathbb{R}^n)$ defines an isometric isomorphism. [You have to prove that the map is well defined, that it is linear, that $\|\phi_u\|_{(L^p)^*} = \|u\|_{L^q}$ for every $u \in L^q(\mathbb{R}^n)$ and that ϕ is surjective. You can make use of the Hölder inequality without proving it.]

2 Suppose (Ω, Σ, μ) is a measure space.

a) For $1 \leq p \leq \infty$, prove the completeness of $L^p(\Omega, d\mu)$. [You may use the fact that $\|.\|_p$ is a norm as well as the monotone and the dominated convergence theorems without proof.]

b) Suppose that $1 \leq p < q < r \leq \infty$. Prove that, for every $C_p < \infty$, $C_r < \infty$, and $C_q > 0$, there exist $\epsilon > 0$ and M > 0 such that $\mu(\{x : |f(x)| > \epsilon\}) > M$ for all $f \in L^p(\Omega, d\mu) \cap L^r(\Omega, d\mu)$ such that $||f||_p \leq C_p$, $||f||_q \geq C_q$, and $||f||_r \leq C_r$.

c) Find examples to show that the conclusion of b) does not necessarily hold true if the condition $||f||_p \leq C_p$ or the condition $||f||_r \leq C_r$ is removed. [*Hint: you can take* $\Omega = \mathbb{R}$ and μ to be Lebesgue's measure.]

UNIVERSITY OF

3 a) Assume that $n \ge 3$. Suppose that $f, f_j \in H^1(\mathbb{R}^n)$ for every $j \in \mathbb{N}$ are such that $f_j \to f$ weakly in $H^1(\mathbb{R}^n)$ as $j \to \infty$. Suppose that $\Omega \subset \mathbb{R}^n$ is a bounded set and that χ_Ω denotes the characteristic function of Ω . Show that $\chi_\Omega f_j \to \chi_\Omega f$ strongly in $L^q(\mathbb{R}^n)$, for all q < 2n/(n-2).

b) State and prove the Poincaré inequality for $f \in W^{1,p}(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is a bounded, connected, open set having the cone-property, and where p < n. [In the proof you can make use of the Rellich-Kondrashov Theorem on general sets having the cone-property.]

4 a) Suppose that $\Omega \subset \mathbb{R}^n$ is open. Suppose that $T_n \in \mathcal{D}'(\Omega)$ for all $n \in \mathbb{N}$, and $T \in \mathcal{D}'(\Omega)$. What does $T_n \to T$ in $\mathcal{D}'(\Omega)$ mean? How is the distribution $\partial_{x_j} T$ defined? Show that the derivative of a distribution is a distribution. Show that $T_n \to T$ implies that $\partial_{x_j} T_n \to \partial_{x_j} T$ in $\mathcal{D}'(\Omega)$.

b) Explain the meaning of the equation

$$-\Delta \frac{1}{|x|} = 4\pi\delta \qquad \text{in } \mathcal{D}'(\mathbb{R}^3) \,. \tag{1}$$

Prove (??).

c) Consider the sequence of functions on \mathbb{R}^2 :

$$g_n(x) := \begin{cases} c_n(1 - |x|^4)^n & \text{if } |x| \le 1\\ 0 & \text{if } |x| > 1 \end{cases}$$

with

$$c_n^{-1} = \int_{|x| \leq 1} dx dy \, (1 - |x|^4)^n$$

Prove that $g_n \to \delta$ in $\mathcal{D}'(\mathbb{R}^2)$. [*Hint: it may be useful to start by finding an upper bound for the constants* c_n .]

UNIVERSITY OF

5 a) Suppose that $\Omega \subset \mathbb{R}^n$ is open, and let $f \in L^1_{loc}(\Omega)$ be a real valued function. What does it mean for f to be *subharmonic* on Ω ? What does it mean for f to be *superharmonic* on Ω ? What does it mean for f to be *harmonic* on Ω ?

b) Show that, if f_n is a sequence of subharmonic functions on Ω , then $g(x) = \sup_{n \ge 1} f_n(x)$ is also subharmonic.

If $f \in L^1_{\text{loc}}(\Omega)$ is subharmonic, we proved in class that there exists a unique function $\tilde{f}: \Omega \to \mathbb{R} \cup \{-\infty\}$ such that $f(x) = \tilde{f}(x)$ for a.e. $x \in \Omega$, \tilde{f} is upper semicontinuous, and \tilde{f} is subharmonic for all $x \in \Omega$. This function then satisfies the mean-value inequality for all $x \in \Omega$. You can make use of these facts to answer the two following questions.

- c) Show that if $f \in L^1_{\text{loc}}(\Omega)$ is harmonic on Ω and $f = \tilde{f}$, then $f \in C^{\infty}(\Omega)$.
- d) State and prove the strong maximum principle.

END OF PAPER