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1 An infinitely thin ‘fish’ has uniform depth and density, a rigid body of length αL
and a rigid tail of length L which is hinged to the body and can rotate relative to it. The
mass of the fish is M , its moment of inertia about a vertical axis through the centre of
mass is I, and the added mass per unit length is m. The lateral displacement, relative to
a straight line through the body, is

h0(x, t) = 0 −αL < x < 0
= h1

x

L
f(t) 0 < x < L

where h1 is the amplitude at the tip of the tail, x = L.

Taking into account the recoil correction, use Lighthill’s small-amplitude elongated-
body theory to show that, for α≫ 1, the lateral displacement R(t) of the centre of mass
and the recoil rotation about it, θ(t), are given approximately by

R̈(M ′ − 1) + Lθ̈ − 2Uθ̇ = 1
2α−1h1

(
f̈ +

4Uḟ

L

)

and

−R̈(M ′ − 1) + Lθ̈2α
(
I ′ + 1

6

)
+ 2Uθ̇ = α−2h1

(
2
3
f̈ +

2U
L

ḟ

)
,

where U is the swimming speed, assumed constant, M ′ = M/m(αL) and I ′ = I/m(αL)3.

In the case f = cos ωt, deduce that the mean thrust is approximately equal to

m

4

[
h2

1ω
2 − U2 +

h2
1ω

2

α

(
1

M ′ − 1
+

1
4
(
I ′ + 1

6

))] .

Comment on this result.
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2 A spermatozoon swims in a fluid of viscosity µ with instantaneous head velocity
[−U(t),−V (t)] in (x, y) coordinates, by passing a planar wave along its inextensible
flagellum, whose length is L. If it were not swimming the flagellum would be aligned
with the x-axis. The y-coordinate of a material point at distance s along the centreline
of the flagellum, measured from the point O where it is attached to the head, which is
spherical, and in a frame of reference moving with O, is

Y (s, t) = Hekscos[k(s − ct)] ,

where H, k and c are constants.

Ignoring the rotation of the spermatozoon, use resistive-force theory, for small kH,
to find the instantaneous value of V (t) and to show that the mean swimming speed is

U ≈ ck2H2

4kL

(1− γ)
(δ + γ)

{
e2kL− 1− 1

(1 + δ)kL

(
e2kL− 2 ekL cos kL + 1

)}
,

where γ = KT /KN , the ratio of the tangential and normal resistance coefficients, and the
drag on the head is equal to µKNLδ(U, V ).

Calculate, to leading order in kH, the time-dependent bending moment that is
exerted by the contractile apparatus at s = 0. [There is no need to simplify the expression
you obtain.]
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3 A dilute suspension of identical, spherical, bottom-heavy, swimming micro-organisms
occupies a long circular cylinder of radius R which is rotating steadily at angular velocity
Ω about its axis, which is horizontal and in the x2-direction; x3 is vertical and B is the
gyrotactic reorientation time. Bioconvection does not occur.

(a) Show that, if randomness in cell swimming is neglected and BΩ < 1, individual
cells follow circular paths, centred on an axis A that is displaced by a distance Vs/Ω
from the cylinder axis O, where Vs is the cell swimming speed, and derive the angle
α that the plane containing the two axes A and O makes with the horizontal.

(b) In the case where randomness in the cell swimming direction p cannot be neglected,
and for BΩ ≫ 1, solve the Fokker-Planck equation for the probability density
function f(p) in the form

f = f0 +
α

BΩ
sin θ cos φ + O

[
(BΩ)−2

]
,

where (θ, φ) are the polar coordinates of p with θ = 0 in the x3-direction and φ = 0
in the (x1, x3)-plane, and α is a constant to be evaluated. You may assume that f0

is isotropic and that λ = 1/BDR = O(1), where DR is the rotational diffusivity.

Calculate the mean swimming direction < p > to leading order.

(c) Under the conditions of part (b), show that the steady-state cell-conservation
equation reduces to the following dimensionless form in plane polar coordinates
(Rr, θ′) (where θ′ = 0 in the x1-direction):

∂2n

∂r2
+

1
r

∂n

∂r
+

1
r2

∂2n

∂θ′2
− β2 ∂n

∂θ′
+ ǫ

(
cos θ′

∂n

∂r
− sin θ′

r

∂n

∂θ′

)
= 0 ,

where N0n is the number of cells per unit volume (average value N0),

β2 =
ΩR2

D
, ǫ =

2VsR

3BΩD
,

and D is the translational diffusivity, assumed isotropic. Show too that the
boundary condition on r = 1 is

∂n

∂r
+ ǫ n cos θ′ = 0 .

Assuming that ǫ ≪ 1 and β ≫ 1, show that the steady-state cell distribution
is given approximately by the real part of

n = 1− ǫ

β
ei(θ′−π/4) exp

[
− eiπ/4 β(1− r)

]
.
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4 Consider a dilute suspension of identical, spherical, bottom-heavy, swimming micro-
organisms in fluid of density ρ and kinematic viscosity ν. An individual cell has swimming
velocity Vsp, where p is a unit vector, and the centre of mass is located at position
−hp relative to the centre of the sphere. The cell has volume v, mass m, and density
ρ + ∆ρ = m/v. Neglecting randomness of cell behaviour, explain why p is given by

1
B

[
k̂− (k̂ · p)p

]
=

1
2
ω̂ ∧ p , (1)

where k̂ is the unit vector directed vertically upwards, ω̂ is the vorticity in the ambient
flow and

B = ρνα⊥v/mgh ,

where α⊥ is a dimensionless constant. What is the physical interpretation of B?

The suspension occupies a chamber −H 6 ẑ 6 0, of horizontal extent ≫ H, and
exhibits bioconvection when the average cell volume fraction n̂0 exceeds a critical value
which we seek to calculate.

(a) The basic state is one in which the fluid velocity û = 0 and all the cells are
taken to be swimming upwards. Random behaviour is modelled by an isotropic
translational diffusivity D. Use the cell-conservation equation to show that the cell
volume fraction n̂ is given by

n̂ = n̂0
h exp[hẑ/H]

1− e−h
≡ n̂0 n(z) ,

where h = VsH/D and z = ẑ/H.

(b) Write down the differential equations governing small perturbations about the basic
state, assuming that the stress tensor is Newtonian, and non-dimensionalise them
using the following variables:

(x, z) =
(x̂, ẑ)

H
, t =

νt̂

H2
, n =

n̂

n̂0
, u = (u, v,w) =

Hû
D

, Pe =
H2P̂e

ρνD

where P̂e is the pressure perturbation. Show that, for disturbances in which

[n− n(z), w] = [N(z),W (z)] exp[σt + iκx] ,

the equations reduce to(
d2

dz 2 − κ2 − σ

)(
d2

dz 2 − κ2

)
W = −Rκ2N

(
d2

dz 2 − h
d

dz
− κ2 − Sσ

)
N =

dn
dz

(z)W −Gn(z)
(

d2

dz 2 − κ2

)
W ,

where

R =
gn̂0v∆ρH3

νDρ
, S =

ν

D
, G =

VsB

2H
.

Write down the boundary conditions on W and N for the case in which a no-slip
condition applies at both z = 0 and z = −1.

Part III, Paper 81 [TURN OVER



6

(c) Seek the critical value Rc of R, above which instability will occur, in the limit
h→ 0, by assuming a large wavelength and that the eigenvalues σ are real (so that
a neutrally stable solution has σ = 0). Solve the problem by taking

κ = hκ′, W = h

∞∑
n=0

hnWn(z), N =
∞∑

n=0

hnNn(z), Rc = h−1
∞∑

n=0

hnRn .

Show that the leading-order equations give

N0 = constant = 1 (without loss of generality)

W0 = −κ′2R0

24
(z4 + 2z3 + z2) .

Then show that
N1 = −GW0 + z

and deduce from the equation for N2 and the boundary conditions that R0 = 720
for all values of κ′. [There is no need to calculate W1 explicitly.]

END OF PAPER
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