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1 A plane internal gravity wave of frequency ωi, wavelength λi and amplitude ηi

is propagating downward through an inviscid, stratified fluid in z > 0. The buoyancy
frequency for z > 0 is N1, but this changes to N2 for z < 0. The background density ρ0(z)
is continuous at z = 0.

(a) By linearising the equations of motion, derive the dispersion relationship for
the waves, stating any assumptions made. Give an expression for θ1 and θ2, the angle
between the vertical and the group velocity of the waves in each of the layers. Describe
the geometric relationship between the directions of the phase velocity and group velocity,
and any limits on the wave frequency.

(b) Show that if the pressure p is continuous at z = 0, then the horizontal velocity
component u must also be continuous. Determine the properties of the wave transmitted
into z < 0, and show that the wave reflected from z = 0 has an amplitude ηr satisfying

ηr

ηi
=

sin θ2
sin θ1

− cos θ2
cos θ1

sin θ2
sin θ1

+ cos θ2
cos θ1

.

(c) Suppose a rigid boundary is introduced at z = −H. Describe how this changes
the structure of the disturbance. For θ1 = π/3 and θ2 = π/6, determine how the amplitude
of the disturbance varies with H and show that for −H < z < 0 the maximum amplitude
of the downward propagating wave is

√
3ηi. For what H does this occur? What is the

amplitude of the upward propagating wave in z > 0?
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2 Consider a channel in which the cross-sectional area containing water is given by
S(x, h), where t is time, x is the along-channel coordinate, h = h(x, t) is the height of the
water surface above some datum and u(x, t) is the velocity of the water.

(a) Express the complete derivative dS/dx in terms of partial derivatives and explain
the meaning of each term. Derive the continuity equation for this channel, stating any
assumptions made. Determine the speed of the characteristics for the flow and show that
along the characteristics

2
g

dc2/dh

dc

dξ
± du

dξ
= −uc

S

∂S

∂x
,

where g is gravity, c is the wave speed, ξ is the time along the characteristics, and ∂S
∂x is

evaluated at constant h.

(b) By linearising around surface height h0 and area S0 = S(x, h0), show that the
amplitude η(x) of a linear standing wave disturbance in the channel is governed by

d2η

dx2
+

S′
0

S0

dη

dx
+ k2η = 0,

where S′
0 = dS0/dx and k is the wavenumber.

(c) For the case of a channel with S′
0 = βS0 with constant β, discuss how the form of

the solution depends on the magnitude of k. Determine the wavenumber of the standing
modes that can exist in a basin of length L bounded by dams at each end.

(d) Describe the flow that would develop if the dam at one end of the channel were
to fail at t = 0. Assuming the channel close to the dam that fails has a triangular cross-
section of uniform depth and width, determine the depth profile and front speed of the
current that develops.
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3 A volume V0 of water of density ρ0 containing bubbles with volume concentration
φ0 ≪ 1 is released at z = 0 beneath the surface of the ocean to form a bubbly thermal.
The density of the ocean is ρa(z) with ρa(0) = ρ0, and the bulk density of the thermal
is ρ(1 − φ) where ρ is the density of the water in the thermal and φ is the local volume
concentration of bubbles. As the thermal rises, Boyle’s law states that for isothermal
bubbles the density of the gas in each bubble obeys p/ρb = p0/ρB , where p is the pressure
and ρb is the gas density. Here, p0 and ρB are the pressure and gas density at z = 0.

(a) Determine the variation with depth of the gas density and hence the contribution
of the bubbles to the buoyancy of the thermal. In this calculation you may neglect
variations in ρa(z) and the influence of surface tension, and assume the gas density is
small. Under what conditions can the rise velocity of the bubbles be neglected?

(b) State the Boussinesq assumption and describe the entrainment coefficient α and
the mechanism by which the volume of the thermal increases as it rises. Assuming φ
remains small and the thermal is spherical, show that the diameter 2a of the thermal
grows linearly with height, independently of the stratification.

(c) Justify the use of a Froude number condition based on the diameter of the
thermal for the rise velocity of the thermal. What is the principal drag mechanism? Show
that for z ≫ a0/α in a homogeneous ocean the rise velocity is

W = F

 2φ0a
3
0g(

1− ρ0g
p0

z
)

α2z2

 1
2

,

where F is a Froude number and 2a0 is the initial diameter of the thermal.

(d) For a stratified ocean described by constant buoyancy frequency N , determine
the density ρ of the water within the thermal as a function of z and hence the bulk reduced
gravity for the thermal. Show that the maximum rise height of the thermal is given by
the solution of a fifth order polynomial. [You need not determine the solution of this
polynomial.]

(e) Give an explicit solution for the rise height in the case of a very deep release.
Describe briefly what you would expect to happen after the thermal reaches this height?
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4 A tall tube of height 2H and square cross-section W ×W (W ≪ H) is filled with
a statically unstable stratification given by ρ0(1 + G(z)) at t = 0, where ρ0 is the density
at z = 0, and G(z) is an odd function that increases monotonically with z. The flow that
develops may be characterised by high Reynolds number turbulent diffusion driven by the
release of potential energy from the density stratification.

(a) Sketch the form of the energy density spectrum for high-Reynolds-number,
homogeneous, isotropic turbulence and indicate key features. Discuss how this relates
to the flow that might develop in the tube. Show how Reynolds stresses uiuj arise from
the Navier-Stokes equations and discuss how these may be modelled through a turbulent
viscosity.

(b) Using dimensional analysis, determine a typical velocity scale for the turbulence
in the tube through an instantaneous balance between buoyancy and inertial forces. Define
a suitable turbulent mass diffusivity and show that the flux of density across any horizontal
plane in the tube is given by

Fρ = K

(
g

ρ

) 1
2

W 2

(
∂ρ

∂z

) 3
2

,

where K is a constant and ∂ρ
∂z is the density gradient averaged over the horizontal plane.

State any assumptions made. Write down the equation for the evolution of the vertical
density gradient (averaged over a horizontal plane).

(c) Show that the density gradient in a Boussinesq fluid will increase if

(
∂2ρ̄

∂z2

)2

+ 2
∂ρ̄

∂z

∂3ρ̄

∂z3
> 0.

Suppose the horizontally-averaged density profile is self-similar and given by ρ̄(z, t) =
ρ0(1 + F (t)G(z)). Determine a nonlinear form for G(z) that gives self-similarity in a
Boussinesq fluid and hence determine the evolution of the density field within the tube.
[You need not take into account the boundary conditions at z = ±H/2.] Comment on the
validity of the model as t increases.
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5 A single layer of fluid flows along a channel of width b(x) and bottom elevation
H(x). The channel is rotating with angular frequency f/2 about the vertical z axis.

(a) Write down an expression for potential vorticity P and show that this is related
to the Bernoulli potential B for an inviscid shallow water flow by

dB/dψ = −P,
where the horizontal velocity is given by uh = ∇∧(ψẑ), h is the layer depth, ψ is a stream
function and ẑ is the unit vector in the vertical direction. How does P evolve for a fluid
element in an inviscid flow?

(b) Assume the flow is in geostrophic balance with negligible cross-channel velocity
and show that the volume flux along the channel is given by

Q =
g

2f
(
h2

1 − h2
2

)
,

where h1 and h2 are the surface heights at the two walls, y = 0 and y = b, respectively.

(c) Taking the velocity at y = 0 as u1(x), determine how the depth and velocity
of the flow vary across the channel for a steady flow from a reservoir in which P = 0.
Describe the conditions in such a reservoir.

(d) Show that the velocity u1 at y = 0 is given by

u1 = −bf
2

+
gh1

bf
−

(
g2h2

1

b2f2
− 2

Qg

b2f

) 1
2

,

and hence derive a specific energy function E for this wall. How does the specific energy
vary along the channel? How does it vary across the width of the channel?

(e) Suppose that a hydraulic control exists at x = 0. What is the significance of the
hydraulic control? Determine Q in terms of h1 at this point. What limit has to be placed
on b for this analysis to be valid?
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