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1 Consider the rigid body whose surface is defined by F (x, t) = 0, with F > 0 outside
the body. Starting from the kinematic condition

∂F

∂t
+ u.∇F = 0 ,

and the equations of mass and momentum conservation for an inviscid fluid, show that[
∂2

∂t2
− c2

0∇2

] [
ρ′H(F )

]
=

∂

∂t
{ρ0u.∇Fδ(F )} − ∂

∂xi

{
p
∂F

∂xi
δ(F )

}
+

∂2

∂xi∂xj
{TijH(F )} ,

where ρ′ is the acoustic density perturbation to the mean density ρ0, p is the fluid pressure,
Tij is the Lighthill quadrupole (to be defined) and H(z) is the unit step function. Show
how ρ′ can be written as the sum of three integrals. In the case in which the acoustic
sources are compact, show how these integrals can be simplified to yield a result of the
form

ρ′(x, t) =
ṁ(t − |x|/c0)

4π|x|c2
0

− x̂iḟi(t − |x|/c0)
4π|x|c3

0

+
x̂ix̂jS̈ij(t − |x|/c0)

4π|x|c4
0

, (1)

where the quantities m, fi and Sij are to be defined. Be careful to explain clearly the
approximations which have been used to derive equation (1).

Consider a small compact sphere of constant radius a, whose centre undergoes small-
amplitude oscillations of amplitude a1 and frequency ω. Show how the various components
of the far-field sound scale with the small parameter aω/c0. Calculate explicit expressions
for the components of the sound associated with the terms ṁ and ḟi in equation (1).

[The free-space Green’s function is

G(x, t) =
δ(t − |x|/c0)

4π|x|c2
0

. ]
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2 Consider the semi-infinite waveguide formed by the rigid plates x > 0, y = ±b. The
incident plane wave with velocity potential

φinc = exp(ik0x + iωt)

propagates in the negative x direction inside the waveguide. Show that the Fourier
transform of the scattered potential can be written in the form

iL+(−k0)L−(k)cosh(γy)
γsinh(γb)(k + k0)

for |y| < b ,

where k is the Fourier-transform variable, γ(k) =
√

k2 − k2
0 and L(k) = γsinh(γb) exp(−γb).

The factors L±(k) satisfy L(k) = L+(k)L−(k) and are analytic, nonzero and have algebraic
behaviour at infinity in the upper and lower halves of the complex plane respectively.

Find a corresponding expression for the Fourier transform of the scattered potential
in |y| > b.

Determine the following:

(i) the far-field scattered potential in |y| > b;

(ii) the amplitude of the plane wave reflected back down the wave guide in the positive
x direction.

Show that the total potential (incident plus scattered) is proportional to (−x)1/2 as
x→ −∞ in |y| < b.

[Hint: Use the Fourier transform convention

Φ(k, y) =
∫ ∞

−∞
φ(x, y) exp(ikx)dx .

You may use the result∫
Γ

f(k) exp(−ikr cos θ − γr| sin θ|)dk ∼
(

2k0π

r

)1/2

f(k0 cos θ)| sin θ| exp(−ik0r + iπ/4)

as r →∞, where Γ is the steepest descent contour.]
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3 (a) The evolution of a plane wave is governed by Burgers equation

∂q

∂X
− q ∂q

∂θ
= ǫ

∂2q

∂θ2
,

with q(θ, 0) = f(θ) given. When ǫ = 0 obtain the characteristic solution, and briefly
explain how to use weak shock theory when the wave overturns. What happens when

f(θ) =
{

0 θ < 0
U θ > 0 ,

(1)

for U > 0?

For ǫ > 0 use the Cole-Hopf transformation

q = 2ǫ
∂

∂θ
lnψ ,

together with the general solution of the diffusion equation,

ψ(θ,X) =
1

(4πǫX)1/2

∫ ∞

−∞
ψ(θ′, 0) exp

[
−(θ − θ′)2

4ǫX

]
dθ′ ,

to find the solution of Burgers equation with initial data given by equation (1). You may
write your answer in terms of the complementary error function

erfc(z) ≡ 2√
π

∫ ∞

z
exp(−t2)dt .

(b) Let E be a time-harmonic electromagnetic wave propagating in a 3-dimensional
medium with permittivity ǫ = ǫ(x) and permeability µ = µ0, where µ0 is the permeability
of free space, so that the wave equation for E can be written as

∇2E + k2ǫrelE = 0 , (2)

where ǫrel = ǫ(x)/ǫ0, with ǫ0 the permittivity of free space.

(i) Derive the parabolic wave equation for

U(x, y, z) = E(x, y, z)e−ikx , (3)

where E is a scalar field propagating at a small angle with respect to the x-direction.
Explain under what condition it is a good approximation and what physical effects may
be neglected.

(ii) Consider now a linearly polarized electromagnetic wave, such that the electric
field vector lies in the (x, z) plane: E = E(x, y, z)ê, where ê = (1, 0, 1). Assume that this
wave is propagating at a small angle with respect to the x-direction, and we can write

E = Ueikx = U(x, y, z)êeikx (4)

and the slowly-varying function U(x, y, z) obeys the same parabolic equation as derived
in (i). Show that the total energy flux at any plane x = const must be constant.
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[Hint: You may wish to define the Hermitian operator

L =
1
2k
∇2
⊥ +

k

2
(ǫrel − 1) , where ∇2

⊥ =
∂2

∂y2
+

∂2

∂z2
(5)

in Green’s theorem: ∫ ∞

−∞

∫ ∞

−∞
f(Lg)∗ds =

∫ ∞

−∞

∫ ∞

−∞
g∗(Lf)ds , (6)

with f and g sufficiently smooth functions, chosen here as f = g = E(x, y, z), and to use
the relationship E =

√
µ/ǫH between the amplitudes of the electric and magnetic field of

a plane wave.]

4 Consider a 2-dimensional space with horizontal coordinate x and vertical coordinate
z. Let z = h(x) define a perfectly reflecting, statistically rough surface with mean
< h >= 0 and r.m.s. height σ, with the medium above the surface having density ρ.

A time-harmonic monochromatic acoustic plane wave ψi with frequency ω and
corresponding wavenumber k is incident upon the surface at an angle θ with the horizontal.

(a) In the case of small surface height, |kh(x)| ≪ 1, derive an expression for the
scattered field ψs(x, z). Assuming that the surface z = h(x) is statistically stationary,
derive the mean scattered field.

(b) Write a general expression for the mean scattered field < ψs(x, z) > in terms of
an effective (unknown) reflection coefficient. Now consider an additional, flat, impedance
surface at z = d, defining a layer d > z > h(x), so that the medium above the rough
surface h(x) is divided into the layer, with density ρ, and an upper medium z > d with
density ρ2 and corresponding wavenumber k2.

Write an expression for the mean field < ψtot(x, z) > in the layer.
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5 Given the direct scattering problem defined by

Ax = y , (1)

where A is a symmetric positive definite n× n matrix, A has the spectral representation

Ax =
n∑

i=1

λi(x, ui)ui , (2)

where λi are eigenvalues 0 6 λ1 6 . . . 6 λn and ui are the corresponding orthonormal
eigenvectors.

Consider now the inverse problem
x = A−1y . (3)

Assume that λ1 6= 0 and that the known data yδ is given with a known error δ such that

‖ yδ − y ‖6 δ . (4)

(a) Relate the stability of the inverse problem (??) to the value of the ratio between
the largest and the smallest eigenvalues κ = λn/λ1 .

(b) Describe how Tikhonov regularisation is applied to the inverse problem (??) to
find a regularised solution xα = Rαy .

Estimate the error between the exact solution of the inverse problem x = A−1y and the
regularised solution xα(δ) of the regularised inverse problem with real data xα(δ) = Rαyδ ,
showing its dependence on the error in the data, δ .

(c) Now assume that you use a different, simpler regularisation, defined by the
operator Sα = (αI +A)−1 , so the regularised solution from real data is now xα(δ) = Sαyδ .
Use the spectral representation of the operator A , and of Sα to derive an expression for
the error between the exact and the regularised solution which explicitly relates α and δ .
Choose a reasonable upper bound for ‖ xα(δ) − x ‖ , hence choose α .

END OF PAPER
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