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1

(a) In the limit ǫ→ 0 , with ǫ real, find two terms of an asymptotic expansion for each
of the roots, both real and complex, of the equation

z

(1 + z2)2
= ǫ .

(b) Fresnel functions C(λ) and S(λ) are defined for real λ > 0 as

C(λ) =
∫ λ

0
cos(t2)dt S(λ) =

∫ λ

0
sin(t2)dt .

Obtain full asymptotic expansions for C(λ) and S(λ) in each of the limits λ→ 0 and
λ→∞, giving the first three terms of the expansions for C(λ) explicitly. [Standard
results may be quoted without proof. ]

A pocket calculator has the usual ‘built-in’ functions. Based on your results above,
how would you construct an approximation to C(λ) valid for all λ > 0 suitable for
such a calculator? [Detailed calculation to obtain such a formula is NOT required
nor any arithmetic calculation of C(λ). ]
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2 Use the method of multiple scales to solve the following problems.

(i) A perturbed oscillator satisfies the equation

d2x

dt2
+ x = ǫf

(
x,

dx

dt

)
with ǫ ≪ 1 .

If the solution of the equation is written

x = R(T ) cos(t + φ(T )) with T = ǫt

show that
dR

dT
= −〈f sin(t + φ)〉 R

dφ

dT
= −〈f cos(t + φ)〉

where the average 〈. . .〉 should be defined.

Find R and φ explicitly if f = −x3 with arbitrary initial conditions for x.

[Hint: cos4 θ ≡ 1
8 cos 4θ + 1

2 cos 2θ + 3
8 . ]

(ii) Derive similar averaged results for the coupled problem

d2x

dt2
+ x = −2ǫy

dx

dt

dy

dt
= ǫg(x) .

Hence find R(T ) and φ(T ) explicitly for the cases g(x) = x and g(x) = 1
2 log(x2),

with arbitrary initial conditions for x and y.[∫ 2π

0
log

(
cos2 θ

)
dθ = −4π log 2

]
.
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3 Rayleigh’s equation, (
d2

dy2
− k2

)
φ−

(
U

′′

U − c

)
φ = 0 ,

governs the growth of linear disturbances on a two-dimensional flow

u = (U(y), 0) ,

where φ is the disturbance eigenfunction, k is the wavenumber, c is the wavespeed and
U

′′
= d2U

dy2 . Assume that there are rigid walls at y = a < 0 and y = b > 0, so that

φ = 0 on y = a and y = b.

Suppose for a given smooth monotonic profile U(y) (with U ′(y) > 0), that a neutral mode
can be found with real regular eigenfunction φ = φ0(y), real wavenumber k = k0 and real
wavespeed c = c0. You may assume both that there exists a unique value y = y0 such that
U(y0) = c0, and that φ0(y0) 6= 0. Give a very brief argument why, in general, U ′′(y0) = 0.

Henceforth assume that a and b have been chosen so that y0 = 0, and that U ′′(0) = 0.

Consider asymptotic solutions to Rayleigh’s equation when |k− k0| ≪ 1 by writing

k = k0 + ǫk1 + . . . , c = c0 + ǫc1 + . . . , φ = φ0 + ǫφ1 + . . . ,

where 0 < ǫ ≪ 1. Deduce that(
d2

dy2
− k2

0

)
φ1 +

U ′′

U − c0
φ1 =

(
2k1k0 +

c1U
′′

(U − c0)2

)
φ0 . (∗)

Assume that Im(c1) > 0, and that as y → 0:

φ0 = φ0(0) + yφ′0(0) + . . . U = c0 + yU ′(0) + 1
6y3U ′′′(0) . . . .

By using equation (∗) deduce that as y → ±0:

φ1(y) = φ1(0) + y log |y|β± + yb± + . . .

and obtain expressions for β+ and β− in terms of c1, U ′(0) and U ′′′(0).

Explain why it is appropriate to introduce an ‘inner’ scaling y = ǫℓη near y = 0,
where ℓ is to be identified. In terms of the variable η assume in the ‘inner’ region that

φ = Φ0(η) + ǫΦ1(η) + (ǫ2 log ǫ) θ2(η) + ǫ2Φ2(η) + . . . .

By finding expressions for Φ0, Φ1, etc., show that

b+ − b− =
iπc1U

′′′(0)φ0(0)
U ′(0)2

.

Hint. You may assume that a particular solution to

Φ′′(η) = A +
Bη

Dη −C
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is

Φ = 1
2

(
A +

B

D

)
η2 +

BC

D3
((Dη − C) log(Dη − C)− (Dη − C)) .

By using equation (∗) show that for δ > 0(∫ −δ

a
+

∫ b

δ

)(
2k1k0 +

c1U
′′

(U − c0)2

)
φ2

0dy =
[
φ1φ

′
0 − φ0φ

′
1

]δ

−δ
.

Hence, by considering the limit δ → 0, deduce that k1 and c1 are related by

2k1k0

∫ b

a
φ2

0dy = −c1

(∫ b

a

U ′′

(U − c0)2
φ2

0dy +
iπU ′′′(0)φ0(0)2

U ′(0)2

)
,

where you should assume that the integrals are defined.

4 Consider an inviscid fluid in an unbounded two-dimensional domain. Suppose that
for times t < 0 the fluid motion is described by Couette flow with the velocity profile

u = (y, 0) .

Show that the equation governing linearised disturbances to this flow is(
∂

∂t
+ y

∂

∂x

)(
∂2

∂x2
+

∂2

∂y2

)
ψ = 0 , (†)

where ψ(x, y, t) is the streamfunction of the disturbance.

Suppose that at t = 0 there is an initial disturbance ψ = exp(iαx)φ(y), where α > 0,
φ is a smooth function, and φ→ 0 as |y| → ∞. Show for t > 0 that the solution for ψ can
be expressed as

ψ =
∫ ∞

−∞
F (y0)G(y, y0) exp(iα(x − y0t))dy0 ,

where you may assume that the integral converges and you should identify the functions
F (y0) and G(y, y0).

Show by integration by parts, or otherwise, that in general ψ(x, y, t) = O(t−2)
as t → ∞. Also deduce the large time behaviour of (a) u = ψy, (b) v = −ψx and
(c) ω = −(ψxx + ψyy).

For an initial disturbance ω(x, y, 0) = ω0(x, y) solve for ω directly from equation (†).
Confirm the large time behaviour of ω deduced in (c) above.
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