

MATHEMATICAL TRIPOS Part III

Wednesday, 3 June, 2009 - 9.00 am to 12.00 pm

PAPER 76

PERTURBATION AND STABILITY METHODS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

(a) In the limit $\epsilon\to 0$, with ϵ real, find two terms of an asymptotic expansion for each of the roots, both real and complex, of the equation

$$\frac{z}{\left(1+z^2\right)^2} = \epsilon$$

(b) Fresnel functions $C(\lambda)$ and $S(\lambda)$ are defined for real $\lambda > 0$ as

$$C(\lambda) = \int_0^\lambda \cos(t^2) dt \quad S(\lambda) = \int_0^\lambda \sin(t^2) dt \,.$$

Obtain full asymptotic expansions for $C(\lambda)$ and $S(\lambda)$ in each of the limits $\lambda \to 0$ and $\lambda \to \infty$, giving the first three terms of the expansions for $C(\lambda)$ explicitly. [Standard results may be quoted without proof.]

A pocket calculator has the usual 'built-in' functions. Based on your results above, how would you construct an approximation to $C(\lambda)$ valid for all $\lambda > 0$ suitable for such a calculator? [Detailed calculation to obtain such a formula is NOT required nor any arithmetic calculation of $C(\lambda)$.]

UNIVERSITY OF

 $\mathbf{2}$

Use the method of multiple scales to solve the following problems.

(i) A perturbed oscillator satisfies the equation

$$\frac{d^2x}{dt^2} + x = \epsilon f\left(x, \frac{dx}{dt}\right) \quad \text{with} \quad \epsilon \ll 1 \,.$$

If the solution of the equation is written

$$x = R(T)\cos(t + \phi(T))$$
 with $T = \epsilon t$

show that

$$\frac{dR}{dT} = -\langle f \sin(t+\phi) \rangle \quad R \frac{d\phi}{dT} = -\langle f \cos(t+\phi) \rangle$$

where the average $\langle \ldots \rangle$ should be defined.

Find R and ϕ explicitly if $f = -x^3$ with arbitrary initial conditions for x. [*Hint*: $\cos^4 \theta \equiv \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$.]

(ii) Derive similar averaged results for the coupled problem

$$\frac{d^2x}{dt^2} + x = -2\epsilon y \frac{dx}{dt} \qquad \frac{dy}{dt} = \epsilon g(x) \,.$$

Hence find R(T) and $\phi(T)$ explicitly for the cases g(x) = x and $g(x) = \frac{1}{2}\log(x^2)$, with arbitrary initial conditions for x and y.

$$\left[\int_0^{2\pi} \log\left(\cos^2\theta\right) d\theta = -4\pi \log 2\right] \,.$$

CAMBRIDGE

3 Rayleigh's equation,

$$\left(\frac{d^2}{dy^2} - k^2\right)\phi - \left(\frac{U''}{U - c}\right)\phi = 0 ,$$

4

governs the growth of linear disturbances on a two-dimensional flow

$$\mathbf{u} = \left(U(y), 0 \right),$$

where ϕ is the disturbance eigenfunction, k is the wavenumber, c is the wavespeed and $U'' = \frac{d^2U}{dy^2}$. Assume that there are rigid walls at y = a < 0 and y = b > 0, so that

$$\phi = 0$$
 on $y = a$ and $y = b$.

Suppose for a given smooth monotonic profile U(y) (with U'(y) > 0), that a neutral mode can be found with real regular eigenfunction $\phi = \phi_0(y)$, real wavenumber $k = k_0$ and real wavespeed $c = c_0$. You may assume both that there exists a unique value $y = y_0$ such that $U(y_0) = c_0$, and that $\phi_0(y_0) \neq 0$. Give a very brief argument why, in general, $U''(y_0) = 0$.

Henceforth assume that a and b have been chosen so that $y_0 = 0$, and that U''(0) = 0. Consider asymptotic solutions to Rayleigh's equation when $|k - k_0| \ll 1$ by writing

 $k = k_0 + \epsilon k_1 + \dots$, $c = c_0 + \epsilon c_1 + \dots$, $\phi = \phi_0 + \epsilon \phi_1 + \dots$,

where $0 < \epsilon \ll 1$. Deduce that

$$\left(\frac{d^2}{dy^2} - k_0^2\right)\phi_1 + \frac{U''}{U - c_0}\phi_1 = \left(2k_1k_0 + \frac{c_1U''}{(U - c_0)^2}\right)\phi_0.$$
(*)

Assume that $\text{Im}(c_1) > 0$, and that as $y \to 0$:

$$\phi_0 = \phi_0(0) + y\phi'_0(0) + \dots$$
 $U = c_0 + yU'(0) + \frac{1}{6}y^3U'''(0)\dots$

By using equation (*) deduce that as $y \to \pm 0$:

$$\phi_1(y) = \phi_1(0) + y \log |y|\beta_{\pm} + yb_{\pm} + \dots$$

and obtain expressions for β_+ and β_- in terms of c_1 , U'(0) and U''(0).

Explain why it is appropriate to introduce an 'inner' scaling $y = \epsilon^{\ell} \eta$ near y = 0, where ℓ is to be identified. In terms of the variable η assume in the 'inner' region that

$$\phi = \Phi_0(\eta) + \epsilon \Phi_1(\eta) + (\epsilon^2 \log \epsilon) \theta_2(\eta) + \epsilon^2 \Phi_2(\eta) + \dots$$

By finding expressions for Φ_0 , Φ_1 , etc., show that

$$b_{+} - b_{-} = \frac{i\pi c_1 U'''(0)\phi_0(0)}{U'(0)^2} \,.$$

Hint. You may assume that a particular solution to

$$\Phi''(\eta) = A + \frac{B\eta}{D\eta - C}$$

Part III, Paper 76

UNIVERSITY OF

is

$$\Phi = \frac{1}{2} \left(A + \frac{B}{D} \right) \eta^2 + \frac{BC}{D^3} \left((D\eta - C) \log(D\eta - C) - (D\eta - C) \right) \,.$$

5

By using equation (*) show that for $\delta > 0$

$$\left(\int_{a}^{-\delta} + \int_{\delta}^{b}\right) \left(2k_{1}k_{0} + \frac{c_{1}U''}{(U-c_{0})^{2}}\right)\phi_{0}^{2}dy = \left[\phi_{1}\phi_{0}' - \phi_{0}\phi_{1}'\right]_{-\delta}^{\delta}.$$

Hence, by considering the limit $\delta \to 0$, deduce that k_1 and c_1 are related by

$$2k_1k_0\int_a^b\phi_0^2dy = -c_1\left(\int_a^b\frac{U''}{(U-c_0)^2}\phi_0^2dy + \frac{i\pi U'''(0)\phi_0(0)^2}{U'(0)^2}\right),$$

where you should assume that the integrals are defined.

4 Consider an inviscid fluid in an unbounded two-dimensional domain. Suppose that for times t < 0 the fluid motion is described by Couette flow with the velocity profile

$$\mathbf{u} = (y, 0) \, .$$

Show that the equation governing linearised disturbances to this flow is

$$\left(\frac{\partial}{\partial t} + y\frac{\partial}{\partial x}\right) \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\psi = 0, \qquad (\dagger)$$

where $\psi(x, y, t)$ is the streamfunction of the disturbance.

Suppose that at t = 0 there is an initial disturbance $\psi = \exp(i\alpha x)\phi(y)$, where $\alpha > 0$, ϕ is a smooth function, and $\phi \to 0$ as $|y| \to \infty$. Show for t > 0 that the solution for ψ can be expressed as

$$\psi = \int_{-\infty}^{\infty} F(y_0) G(y, y_0) \exp(i\alpha(x - y_0 t)) dy_0$$

where you may assume that the integral converges and you should identify the functions $F(y_0)$ and $G(y, y_0)$.

Show by integration by parts, or otherwise, that in general $\psi(x, y, t) = O(t^{-2})$ as $t \to \infty$. Also deduce the large time behaviour of (a) $u = \psi_y$, (b) $v = -\psi_x$ and (c) $\omega = -(\psi_{xx} + \psi_{yy})$.

For an initial disturbance $\omega(x, y, 0) = \omega_0(x, y)$ solve for ω directly from equation (†). Confirm the large time behaviour of ω deduced in (c) above.

END OF PAPER