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1 You do not need to calculate the details of any specific flow to answer this question.

(i) State carefully the minimum dissipation theorem for Stokes flow.

(ii) A dense sphere of radius a is falling down a very long, vertical tube of radius
R > 2a filled with viscous fluid, and is the only cause of flow in the tube. Explain
carefully why the net volume flux of fluid must be upwards in any cross-section containing
the particle.

(iii) Criticise the statement that, if it is not already there, the sphere will migrate
to the centreline of the tube as it falls because this position minimizes the dissipation. Is
the statement about migration true even though the reason given is false?

(iv) The dense sphere is on the centreline and a second neutrally buoyant sphere of
radius a is added somewhere to the flow. Show carefully that the vertical component of
velocity of the dense sphere in the initial centreline position is less than it was with the
second sphere absent.

[Hints: You may assume that the resistance matrix, giving the force and couple on a single
sphere in the tube in terms of its velocity and angular velocity, is diagonal with respect to
axes aligned with the tube when the sphere is on the centreline. You should not assume
that the dense sphere moves vertically without rotation when the second sphere is present.]

(v) Initially, the first sphere is a long way above the second sphere and is on the
centreline of the tube. The centre of the second sphere is initially a distance 1

10a from the
centreline. Use a scaling argument based on lubrication theory to explain why the two
spheres do not in fact touch as the first sphere falls past the second.

(vi) Show further that the spheres return to their original distances from the
centreline when the first sphere has fallen to a long way below the second.

(vii) The second sphere is now made as dense as the first, and a≪ R. Use part (ii)
to explain why the first sphere may now fall more rapidly or more slowly than the original
rate in the same position, depending on the relative configuration.
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2 (a) State the Papkovich–Neuber representation for the velocity and pressure in
Stokes flow.

Use the Papkovich–Neuber representation, explaining your choice of trial harmonic
potential, to determine the velocity and stress fields due to a point force Fδ(x) at the
origin of unbounded fluid of viscosity µ.

(b) An inviscid spherical bubble of radius a and negligible density rises with velocity
U through unbounded fluid of density ρ and viscosity µ that is otherwise at rest.

State the boundary conditions on the bubble. Show that these conditions can be
satisfied by an appropriate choice of F in the Stokeslet flow of part (a), now understood
to apply only in the region r > a. Deduce that the speed of rise is given by

U =
ρga2

3µ
.

Does the bubble remain spherical if there is no surface tension? Justify your answer
briefly.

(c) Suppose the bubble is now rising through a semi-infinite body of fluid that has
a free surface at a distance d above the centre of the bubble, where d ≫ a. Owing to the
motion of the bubble, the free surface is deflected upwards from its equilibrium position
until the restoring effect of gravity is just sufficient to ensure that the normal velocity u ·n
is approximately zero on the surface. Use scaling arguments to show that the deflection h

is O(a3/d2).

Hence explain why the flow in this problem is approximately the same as that in an
unbounded fluid when there is an inviscid drop of density 2ρ and radius a at a distance 2d
above the bubble. Deduce that the velocity of the bubble is approximately U(1− 1

2a/d).

What dimensionless group needs to be small if surface tension is to keep the bubble
roughly spherical?
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3 Crude oil exudes from a long slit in the side of a wrecked tanker to form a two-
dimensional gravity current on the sea-surface. The viscosity of the oil µ is very much
greater than that of the sea-water, and its density ρ is less than the density ρw of the
water. The density of air can be neglected. The horizontal extent of the current is much
greater than its thickness.

Show that the gravity current is driven by a pressure gradient

∂p

∂x
= ρg′ ∂h

∂x
, where g′ =

ρw − ρ

ρw
g , (∗)

h(x, t) is the thickness of the current and x is the horizontal distance from the side of the
tanker.

Derive from first principles the equations

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0 , 4µ

1
h

∂

∂x

(
h

∂u

∂x

)
=

∂p

∂x
,

where u = u(x, t) is the horizontal velocity in the current.

[The effect of gravity in the horizontal momentum balance may either be assumed simply
to be a horizontal body force equal to minus the driving pressure gradient (∗) or obtained
by integrating the hydrostatic pressure over the sides and bottom of a slice.]

The flow through the slit provides a constant thickness h0 and velocity u0 at x = 0 .
You may assume that the boundary condition at the nose of the current is

4µ hN
∂u

∂x

∣∣∣∣
xN

=
1
2

ρ g′h2
N ,

where hN (t) is the thickness and xN (t) the position at the nose.

Use a Lagrangian approach to determine the thickness, velocity and position at time
t of the slice of fluid that left the tanker at time t0 . What is the location xN (t) of the
nose?

Show that the thickness of the current at a given position x is constant after the nose
has passed, and determine the shape h(x) of the current. What is the physical significance
of the lengthscale µu0/(ρg′h0)?
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4 A snail can crawl forward over a thin layer of mucus by propagating waves backwards
along the underside of its foot. Model this by the following idealized problem in lubrication
theory (treating mucus as a viscous fluid with viscosity µ).

Let the snail be infinitely long and move horizontally with uniform speed U , to
be calculated, over a stationary rigid plane. The waves in the shape of the foot move
backwards with prescribed speed V relative to the snail (and thus V − U relative to the
plane).

In the frame of reference moving with the waves, the layer of mucus has constant
thickness h(x), where h is a prescribed periodic function with wavelength L≫ h. Working
in this frame of reference, use lubrication theory to determine the fluid velocity in terms
of the boundary velocities and the local pressure gradient.

Given that p(0) = p(L), show that the volume flux q in this frame is given by

q =
(V − 1

2U)I2

I3
, where Ij =

∫ L

0
h−j dx.

Hence determine the local pressure gradient and the shear stress on the plane.

Why is the integrated horizontal force on the plane zero? Show that

U =
6(1 − α)V

4− 3α
, where α =

I2
2

I1I3
.

Find U for the case h(x) = h0[1 − A sin(2πx/L)], where 0 6 A < 1. Comment on
the form of the result for U in the limits A→ 0 and A→ 1.[ ∫ 2π

0

dθ

(1−A sin θ)
=

2π
(1−A2)1/2

∫ 2π

0

dθ

(1−A sin θ)2
=

2π
(1−A2)3/2

∫ 2π

0

dθ

(1−A sin θ)3
=

2π(1 + A2/2)
(1−A2)5/2

]
For a general waveform h(x), show that the viscous dissipation Φ per wavelength

is equal to 2µUV I1. [You may assume that the pressure does no work at the boundaries
because the boundary motion is purely tangential in this frame.]

Consider a snail wishing to crawl at a given speed U using a waveform h =
h0[1 − A sin(2πx/L)]. What value of A should an efficient snail use in order to minimize
the viscous dissipation Φ? Show that the optimal value of A still gives 8

√
2/3 times the

viscous dissipation produced by a snail gliding magically with speed U over a uniform film
of thickness h0.
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