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1 Buoyant fluid of density ρ−∆ρ is injected at rate Q exp(−t/τ) per unit length from
a horizontal well into an inclined aquifer, of thickness H, permeability k and porosity φ
filled with fluid of density ρ. The aquifer is bounded above and below by an impermeable
layer of rock. The fluid spreads upslope forming a thin plume, of thickness h(x, t) ≪ H,
where x is the alongslope distance. The dynamic viscosity of the fluid is µ.

(i) Show that the current depth evolves according to the relation

φ
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(ii) Show that the solution for the shape of the current at sufficiently large time is

h(x, t) = h(0, 0) exp
[−ut + xφ

uτ

]
, (1)

where u is a velocity which should be determined explicitly.

(iii) Determine:

1. an expression which defines the “sufficiently large time” at which this approx-
imation holds;

2. the boundary condition at the nose of the current in this limit.

(iv) If the trailing edge of the current leaves behind a fraction s of the fluid owing to
capillary retention, show that the solution (??) changes to

h(x, t) = h(0, 0) exp
[−ut + xφ(1− s)

uτ

]
.

(v) Use this solution to calculate an expression for the volume of fluid in the current as
a function of time.

(vi) Show that this reaches a maximum value after a finite time, which should be
determined.
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2 Polymer-laden water is injected into a horizontal well in an oilfield to displace the
oil which is extracted from a parallel horizontal well a distance L from the injection well.
The polymer-laden water has dynamic viscosity µ. If the flow in the oilfield is stable, it
may be described by a flow field u(x, t), (in the direction x perpendicular to the wells)
which satisfies Darcy’s law. In the injection process, the pressure at the injection well is
maintained an amount ∆P greater than that at the production well.

(i) Assume that the interface between the oil and the water is planar, that the dynamic
viscosity of the oil is µh, that the permeability is k and that the porosity is φ. Derive
an expression for the speed of the current as a function of time assuming that the
concentration of the polymer is constant.

(ii) It is discovered that the influence of the polymer is also sensitive to the temperature
of the fluid, so that the dynamic viscosity increases by a factor b as the polymer
solution heats up from the injection temperature to the temperature of the field.
Under these circumstances, repeat the calculation to determine the rate of advance
of the polymer front with time, following the onset of injection. Assume that:

– the advection speed of isotherms is a fraction Γ of the Darcy speed;

– thermal diffusion is very slow;

– the flow is stable across the thermal front.

(iii) Explain why, in practice, the flow may become unstable across the thermal front.

(iv) In the case that the flow speed is constant, derive an expression for the growth rate
of a sinusoidal disturbance to the interface as a function of the wavelength of the
disturbance, neglecting the effects of thermal diffusion.
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3 The k − ǫ equations in high Reynolds-number, fully developed channel flow
(under the assumption that all the quantities of interest depend only on the wall-normal
coordinate y) may be written as

0 =
d

dy

(
νT

σk

dk

dy

)
+ P − ǫ,

0 =
d
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)
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Pǫ

k
− Cǫ2

ǫ2

k
,

where the turbulent viscosity νT = Cµk2/ǫ, and σk, σǫ, Cµ, Cǫ1 and Cǫ2 are empirical
constants.

(i) Explain briefly the physical significance of each term in the k-ǫ equations.

(ii) Write down expressions for the turbulence production P and the turbulent viscosity
νT in terms of the mean shear and the Reynolds’ stress.

(iii) Now consider the flow in the log-law region. Write down the expression for the mean
shear in the log-law region.

(iv) Present an argument for why the turbulence production and the dissipation rate
should balance in the log-law region such that P ≃ ǫ = u3

⋆/κy, where κ is the von-
Karman constant, and u⋆ is the friction velocity, a quantity which you should define
carefully.

(v) Therefore, show that the turbulent kinetic energy is independent of y.

(vi) By using the balance of turbulence production and dissipation rate and the equiv-
alent definitions of νT in terms of k and ǫ and in terms of the mean shear and
Reynolds’ stress in the log-law region, show that the dissipation rate may be ex-
pressed as

ǫ =
Cµk2

u⋆κy
=

C
1/2
µ ku⋆

κy
=

C
3/4
µ k3/2

κy
.

(You may find it useful to express the Reynolds’ stress in terms of the friction
velocity.)

(vii) Therefore, use the ǫ equation to express the von-Karman constant κ in terms of σǫ,
Cµ, Cǫ1, and Cǫ2.
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4 Consider a fully turbulent, high-Reynolds number flow which is statistically steady
and horizontally homogeneous, and has a mean velocity in the x-direction and a statically
stable mean density gradient which depend on z and possibly time. Assume that the
mean density decreases with z, while the mean velocity increases with z. Assuming that
diffusion terms are small, and that the Boussinesq approximation is valid, the Navier-
Stokes equations and the density equation reduce to

P − g

ρ
ρ′w′ − ǫ = 0 , ρ′w′ ∂ρ

∂z
+ χ = 0 .

In these equations, P is the turbulence production, ǫ is the dissipation rate, χ is the
dissipation rate of mean-square density fluctuations, and overline denotes an appropriate
horizontal spatial average.

(i) Define the flux Richardson number, Rif and the gradient Richardson number Ri(z)
for this flow.

(ii) Explain why it may be appropriate on dimensional grounds to parameterize ǫ and
χ as

ǫ =
q3

Lu
, χ =

ρ′2q
Lρ

, q2 = u′2 + v′2 + w′2 ,

where Lu and Lρ are integral length scales of the velocity and density fluctuations
respectively.

(iii) Assume that Lu and Lρ remain in a fixed ratio irrespective of the overall stratifica-
tion, and also that Cu and Cρ are constants, where

Cu =
−u′w′

q2
, C2

ρ =

(
ρ′w′)2
q2ρ′2

.

Show that

Cu q2 ∂u

∂z
= − g

ρ
C2

ρ Lρq
∂ρ

∂z
+

q3

Lu
. (1)

(iv) Define the quantity R as the ratio of the right hand side of equation (1) to the
left hand side. Plot R against q for different values of the mean density gradient
(including the limiting value of zero density gradient).

(v) Equilibrium (i.e. where equation (1) is satisfied) clearly corresponds to R = 1 . For
a given value of the density gradient, show that the minimum value of R always
corresponds to Rif = 1/2 .

(vi) By solving equation (1) for non-trivial values of q, show that

Rif =
1
2

1−
(

1− 4
LρC

2
ρ

LuC2
u

Ri

)1/2
 ,

and thus identify a critical gradient Richardson number Ric .
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(vii) Briefly discuss what this model implies for flows with Ri > Ric .

END OF PAPER
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