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1 (i) If A > 0 and N is a positive integer, define KA,N : T2 → R by

KA,N (s, t) = A(2 + cos s + cos t)N .

Show that, given any ǫ > 0, we can find A > 0 and N such that

KA,N (s, t) > 0 for all (s, t),
|KA,N (s, t)| 6 ǫ whenever |s| > ǫ,
|KA,N (s, t)| 6 ǫ whenever |t| > ǫ,

and
1

(2π)2

∫
T2

KA,N (s, t) ds dt = 1.

By considering functions of the form

P (x, y) =
1

(2π)2

∫
T2

KA,N (x− s, y − t)f(s, t) ds dt

show that any continuous function f : T2 → R can be uniformly approximated by
trigonometric polynomials.

(ii) Write |E| for the number of elements in a finite set E. State and prove a
necessary and sufficient condition on a point (u, v) ∈ T2 for the following result to be true:

n−1 |{1 6 r 6 n : (ru, rv) ∈ [a, b) × [c, d)}| → (2π)−2(b− a)(d − c)

as n →∞ for all 0 6 a 6 b 6 2π and 0 6 c 6 d 6 2π.

2 (a) State Minkowski’s Fundamental Theorem for the geometry of numbers and use
it to show that if x is real there exist infinitely many pairs of integers n and m with n 6= 0
such that ∣∣∣x− m

n

∣∣∣ 6 1
n2

.

(b) Develop the theory of Fourier Analysis on finite Abelian groups up to and in-

cluding the identification of ˆ̂
G with G and the inversion theorem. [If you use results like the

Structure Theorem for finite Abelian groups you must prove them.]
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3 (a) Suppose that β : [1,∞) → R is an increasing function. Show that, if∫ X

1

β(x)− x

x2
dx

tends to limit as X →∞, then x−1β(x) → 1 as x →∞.

(b) Suppose that Ω is an open set in C with Ω ⊇ {z : ℜz > 0}. Let F : Ω → C be
an analytic function and f : [0,∞] → R a bounded locally integrable function. If

F (z) =
∫ ∞

0
f(t)e−tz dt

for ℜz > 0, show that
∫∞
0 f(t) dt converges.

4 (i) Suppose that Ar → 0 as r →∞. Show that∣∣∣∣∣
n∑

r=1

Ar

(
sin rk

rk

)2
∣∣∣∣∣ 6 n sup

r
|Ar|,

that
∑∞

r=n+1 Ar

(
sin rk

rk

)2 converges absolutely and that∣∣∣∣∣
∞∑

r=n+1

Ar

(
sin rk

rk

)2
∣∣∣∣∣ 6 2n−1 sup

r>n+1
|Ar|.

Hence show that

k
n∑

r=1

Ar

(
sin rk

rk

)2

→ 0

as k → 0.

[You may use the estimate
∑∞

r=n+1 r−2 6 2n−1 without proof.]

If a < c < b, F : [a, b] → C is continuous, F (t) = At+B for t ∈ [a, c], F (t) = A′t+B′

for t ∈ [c, b], and
F (t + h)− 2F (t) + F (t− h)

h
→ 0

as h → 0, show that A = A′, B = B′.

(ii) Let E be a finite set. Suppose that

n∑
r=−n

ar exp(irt) → 0

as n →∞ for all t ∈ T\E. Show that ar = 0 for all r. [You may find part (i) useful in show-
ing that a certain piecewise linear function is, in fact, linear.]
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