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1

Let σn be the Fejer operator, i.e., for a 2π-periodic function f ∈ C(T),

σn(f, x) =
∫ π

−π
f(x− t)Fn(t) dt, Fn(t) :=

1
π

1
2n

sin2 nt
2

sin2 t
2

,

∫ π

−π
Fn(t)dt = 1.

Prove the estimate
‖σn(f)− f‖∞ 6 c ω(f, δn), δn = ln n

n ,

where ω(f, δ) is the modulus of continuity of f . Hence derive that, for any continuous
function f , the Fejer sums σn(f) converge uniformly to f .

2

For f ∈ C[0, 1], write down the definition of the Bernstein polynomial Bn(f), and
derive expression for the first and, consequently, for the r-th derivative B

(r)
n (f, x).

Show that B
(r)
n (f, x) = Bn−r(gr, x) with a certain relation between gr and f . Hence

derive that
B(r)

n (f)→ f (r) ,

i.e., that B
(r)
n (f) converge uniformly to f (r).

Hint. You may use without the proof that, for f ∈ Cr[0, 1], uniformly in x,

lim
h→0

h−r∆r
hf(x) = f (r)(x) ,

where ∆1
hf(x) = f(x + h)− f(x) and ∆r

hf(x) = ∆1
h(∆r−1

h f(x)).
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3

1) Let Sk(∆) be the space of splines of degree k−1 spanned by the B-splines (Nj)nj=1

on a knot sequence ∆ = (tj)n+k
j=1 such that tj < tj+k. Let x = (xi)ni=1 be interpolation

points obeying the conditions
Ni(xi) > 0 ,

and let Px : C[a, b] → Sk(∆) be the map which associates with any f ∈ C[a, b] the spline
Px(f) from Sk which interpolates f at (xi). Prove that

‖Px‖L∞ 6 ‖A−1
x ‖ℓ∞

where Ax is the matrix (Nj(xi))ni,j=1.

2) Consider the case of quadratic interpolating splines on the uniform knot-sequence
(t1, t2, . . . , tn+3) = (1, 2, . . . , n + 3) with the interpolating points

xi =
1
2
(ti + ti+3) = i + 3/2, i = 1, . . . , n .

a) Using the recurrence relation between linear and quadratic B-splines, or other-
wise, determine the values of Nj at the points (xi).

b) Write down the matrix Ax = (Nj(xi)), and evaluate the norm ‖A−1‖ℓ∞ . (You
may use any appropriate theorem on the inverse of certain matrices if correctly stated).

c) Hence show that ‖Px‖L∞ 6 2.

4

a) State the Kolmogorov criterion for the element of best approximation to a real-
valued function f ∈ C[0, 1] from a linear subspace U of C[0, 1].

b) From this criterion, derive the Chebyshev alternation theorem for the element of
best approximation to a function f ∈ C[0, 1] from Pn, the space of all algebraic polynomials
of degree n.
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5 Given a knot sequence ∆ = (ti)n+k
i=1 , let ωi and ℓi(·, t) be polynomials in Pk−1

defined by
1) ωi(x) := (x−ti+1) · · · (x−ti+k−1),

2) ℓi(·, t) interpolates (· − t)k−1
+ on x = ti, ..., ti+k−1.

Further, let
Ni := (ti+k − ti)[ti, . . . , ti+k](· − t)k−1

+

be the B-spline of order k with the knots ti, . . . , ti+k.

a) Prove Lee’s formula

ωi(x)Ni(t) = ℓi+1(x, t)− ℓi(x, t), ∀x, t ∈ R,

and derive from it the Marsden identity:

(x− t)k−1 =
n∑

i=1

ωi(x)Ni(t), tk < t < tn+1, ∀x ∈ R.

b) From the Marsden identity, find the coefficients a
(m)
i in the B-spline representa-

tion of monomials tm:

tm =
n∑

i=1

a
(m)
i Ni(t), tk < t < tn+1, for m = 0, . . . , k − 1.
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6 Let En(f) be the value of the best approximation of a 2π-periodic f by trigonometric
polynomials of degree n, and let ω(f, δ) be the modulus of continuity of f .

a) State the inverse theorem for trigonometric approximation and show that

En(f) = O(n−α) implies ω(f, 1
n
) =

{ O(n−α), 0 < α < 1,
O( ln n

n
), α = 1 .

b) Find the order of ω(g, δ) for the Weierstrass functions

g(x) :=
∞∑

k=0

1
ak

cos 5kx, 1 < a 6 5,

using the fact that, for 5m 6 n < 5m+1, the polynomial of best approximation of degree n
to g is the partial sum tn(x) =

∑m
k=0

1
ak cos 5kx.

c) For the case a = 5, show that

|g(x + 1
n
)− g(x)| > c ln n

n
, x =

π

2
,

hence derive that
ω(g, 1

n
) > c ln n

n
.

Explain briefly why the class of functions with En(f) = O( 1
n) cannot be characterized in

terms of ω(f, 1
n).
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