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1 A steady accretion disc, around a star of mass M , loses mass to a wind at a rate
S(R) per unit area per unit time. If Ṁ (R) is the rate at which mass flows inwards at
radius R, show that

dṀ

dR
= 2πRS .

At radii R > R0, there is no wind so that S = 0 and Ṁ = Ṁ0 = const. At R < R0,
the energy put into driving the wind is a fraction f (0 < f 6 1) of the energy dissipated
locally by the viscosity ν. The energy (per unit mass) given to the wind is such that when
it leaves the disc surface its net binding energy is zero (i.e. the wind is launched at the
local escape speed). Show that this implies

νΣ =
1

9πf
R

dṀ

dR
,

where Σ is the surface density.

The specific angular momentum carried away by the wind is h = R2Ω where Ω is
the angular velocity. Show that conservation of angular momentum then implies

R1/2 d

dR

(
R3/2 dṀ

dR

)
=

3
2
fṀ .

The viscous torque can be assumed to vanish at the inner disc radius R = R∗. For
the case f = 1

3 , find Ṁ(R).

If R∗ ≪ R0, show that

Ṁ (R∗)
Ṁ0

=
3
2

(
R∗
R0

)1
2

.
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2 A star of mass M , radius R∗ and luminosity L∗ is accreting steadily from a disc at
rate Ṁ . Explain what is meant by the disc being a passive disc. Give a rough criterion
for the disc to be passive.

At large radii, R ≫ R∗, a passive disc has a surface at zs(R), where R∗ ≪ zs ≪ R.
The central star may be treated as an isotropic point source of radiation. Show that at
radius R the flux of radiation received by the disc surface is approximately

Fd(R) =
L∗

4πR

d

dR

(zs

R

)
.

Assume that the disc is locally isothermal with temperature Tc(R) given by
Fd(R) = σT 4

c , where σ is the Stefan-Boltzmann constant. Assume also that the disc
is supported by gas pressure, p = (R/µ)ρT ,where R is the gas constant, µ is the mean
molecular mass and ρ is the density, and that zs = fH, where H(R) is the disc scale
height and f is a constant of order unity. Find a first-order differential equation which
relates q ≡ zs(R)/R and R.

If the disc becomes physically thick, i.e. zs → R at some large radius RM ≫ R∗,
show that for intermediate radii, R∗ ≪ R ≪ RM ,

zs

R
=

(
R

R0

) 2
7

(∗)

where

R2
0 =

(
14πσ

L∗

) (
1
f8

)(
GM

R/µ

)4

.

The stellar surface scale height H∗ is given by

H2
∗ =

RT∗/µ
GM/R3∗

,

where T∗ is the stellar surface temperature. In general fH∗ ≪ R∗. Show that this im-
plies R0 ≫ R∗ and hence that the relationship (∗) has some radial range of validity.
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3 The equations governing the radial propagation of axisymmetric (m = 0) waves in
a thin, non-viscous Keplerian disc are

dξ

dz
− N2

g
ξ − (

ω2 −N2
)
uz = 0 ,

and
duz

dz
− ρg

γp
uz +

(
ρ

γp
− k2

ω2 − Ω2
0

)
ξ = 0 .

Here uz is the vertical component of velocity and ξ = iωp′/ρ is a measure of the pressure
perturbation p′. The waves have frequency ω and radial wavenumber k. The perturbations
are adiabatic, so that p′ = (γp/ρ)ρ′, g(> 0) is the vertical gravity, Ω0 the local orbital
frequency and N the Brunt-Väisälä frequency. If the disc is locally isothermal, with
(isothermal) sound speed cs independent of z, show that

ρ(R, z) = ρ(R, 0)e−z2/2H2
,

where H = cs/Ω0.

Show also that in this case

N2 =
(

1− 1
γ

)(
z2

H2

)
Ω2

0 .

In the case where the perturbations are isothermal, so that γ = 1, show that the
equations may be written in the form

d2ξ

dx2
− x

dξ

dx
+ αξ = 0 , (∗)

where x = z/H and

α =
ω2

Ω2
0

[
1− k2c2

s

ω2 − Ω2
0

]
.

State without proof why we require solutions of (∗) for which ξ is a polynomial.
Show that for such solutions we require that α = n for n = 0, 1, 2, . . . .

Give the dispersion relation explicitly in the form ω2 = f(kH) for the cases n = 0
and n = 1, and describe the nature of the waves in each case.

For the case n = 1, write down the generalisation of the dispersion relation to the
non-axisymmetric waves with azimuthal wavenumber m = 1.

Show that for these waves in the low frequency (ω ≪ Ω0), long-wavelength (kH ≪ 1)
limit the dispersion relation is

ω

Ω0
= ±1

2kH .

What do these waves represent?
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