
MATHEMATICAL TRIPOS Part III

Tuesday, 2 June, 2009 1:30 pm to 4:30 pm

PAPER 64

ASTROPHYSICAL FLUID DYNAMICS

Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u·∇ρ = −ρ∇·u ,

∂p

∂t
+ u·∇p = −γp∇·u ,

ρ

(
∂u

∂t
+ u·∇u

)
= −ρ∇Φ−∇p+

1
µ0

(∇×B)×B ,

∂B

∂t
= ∇× (u×B) ,

∇·B = 0 ,

∇2Φ = 4πGρ .
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(a) Discuss the behaviour of the ‘pre-Maxwell’ equations

∂B

∂t
= −∇×E ,

∇×B = µ0J ,

∇ · B = 0

under a Galilean transformation to a frame of reference moving with uniform relative
velocity v. Hence derive the ideal induction equation governing the evolution of the
magnetic field in a conducting fluid. State briefly what conditions are required for
its validity. State without proof the implications of the ideal induction equation for
the evolution of the magnetic field lines and the magnetic flux.

(b) The magnetic helicity in a volume V is

Hm =
∫

V
A · B dV ,

where A is the magnetic vector potential. Derive an expression for the Lagrangian
derivative of A · B/ρ. Hence, or otherwise, show that the magnetic helicity in a
material volume V is both uniquely defined and also conserved, provided that the
magnetic field lines do not penetrate the boundary of V .

(c) A magnetic field is defined in cylindrical polar coordinates (R,φ, z) by

B =

{
aR eφ + bez , R < R0 ,

0 , R > R0 ,

where a, b and R0 are constants. Explain why this represents a twisted magnetic
flux tube. Find the most general form of the magnetic vector potential and use this
to calculate the magnetic helicity of the tube per unit length. Discuss whether the
answer is unique.
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(a) An isothermal gas undergoes a steady one-dimensional flow in the x-direction in a
gravitational potential Φ(x). Show that the Mach numberM satisfies

1
2
M2 − lnM+

Φ
c2
s

= constant ,

where cs is the isothermal sound speed. Deduce that the flow can make a sonic
transition at a maximum of the potential, and determine the value of the constant
in this case.

(b) Show that, in a steady axisymmetric flow in ideal MHD,

(i) the poloidal velocity is parallel to the poloidal magnetic field;

(ii) the angular velocity is approximately constant along each magnetic field line
when the poloidal flow is highly sub-Alfvénic.

(c) Consider a thin accretion disc in the gravitational potential of a point mass M . The
disc has Keplerian angular velocity Ω = (GM/R3)1/2, where (R,φ, z) are cylindrical
polar coordinates. The poloidal magnetic field lines just above the surface of the
disc may be approximated as straight lines inclined at an angle i to the vertical.
Describe the variation of the centrifugal–gravitational potential along such a field
line, for matter that corotates with its footpoint (R, z) = (R0, 0), by expanding the
potential to second order in the distance from the footpoint (or otherwise). Deduce
that an outflow is accelerated from the surface of the disc if i > 30◦.
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3 An ideal gas of adiabatic exponent γ flows in one dimension in the absence of
boundaries, gravity and magnetic fields.

(a) Determine all possible smooth local solutions of the equations of one-dimensional
gas dynamics that depend only on the variable ξ = x/t for t > 0. Show that one
such solution is a rarefaction wave in which du/dξ = 2/(γ+1). How do the adiabatic
sound speed and specific entropy vary with ξ?

(b) At t = 0 the gas is initialized with density

ρ =

{
ρL , x < 0 ,

ρR , x > 0 ,

pressure

p =

{
pL , x < 0 ,

pR , x > 0 ,

and velocity

u =

{
uL , x < 0 ,

uR , x > 0 ,

where ρL, ρR, pL, pR, uL and uR are constants.

(i) Explain why the subsequent flow is of the similarity form described in part
(a).

(ii) What constraints must be satisfied by the initial values if the subsequent
evolution is to involve only two uniform states connected by a rarefaction
wave? Give a non-trivial example of such a solution.

(iii) Explain why, for more general choices of the initial values, the solution cannot
have the simple form described in part (ii), even if uR > uL. What other
features will appear in the solution? (Detailed calculations are not required.)
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4 The linearized equation governing the displacement ξ of a non-self-gravitating fluid
with respect to a magnetostatic equilibrium state may be written

∂2ξ

∂t2
= Fξ,

where F is a linear differential operator defined by

(Fξ)i = − ∂2Φ
∂xi∂xj

ξj +
1
ρ

∂

∂xj

(
Vijkl

∂ξk

∂xl

)
,

with

Vijkl =
(

γp +
B2

µ0

)
δijδkl +

(
p +

B2

2µ0

)
(δilδjk − δijδkl)

+
1
µ0

(BjBlδik −BiBjδkl −BkBlδij).

(a) Show that F is self-adjoint in the sense that

〈η,Fξ〉 = 〈Fη, ξ〉,

where
〈η, ξ〉 =

∫
ρη∗ · ξ dV

defines an inner product between two complex displacement fields η and ξ, and the
integration is over all space. You may assume that the fluid body is of finite size
and is surrounded by a perfectly conducting fluid of negligible density and pressure,
and that the magnetic field decays sufficiently rapidly at infinity.

(b) Show that the functional

W [ξ] = −1
2
〈ξ,Fξ〉

is real, and explain its role in the equation for the energy of the perturbation.

(c) Show that the magnetostatic equilibrium is stable if W [ξ] admits only positive
values, while it is unstable if W [ξ] admits negative values. [Hint : Consider the
second derivative with respect to time of ln〈ξ, ξ〉 for a perturbation of zero energy,
if this exists. Alternatively, if you restrict attention to normal-mode solutions of the
linearized equations, you should prove any variational principles that you use.]
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