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1 Show that the gravitational potential energy of a spherical system with density
ρ(r) is given by

W = −4πG

∫ ∞
0

rρ(r)M(r)dr,

where M(r) is the mass enclosed within radius r.

Show that the projected density of the system Σ(R) as a function of projected radius
R is

Σ(R) = 2
∫ ∞

R

ρ(r)rdr√
r2 −R2

.

Show how to invert this using Abel transforms to obtain the density as

ρ(r) = − 1
π

∫ ∞
r

dΣ
dR

dR√
R2 − r2

.

Let us define the strip density S(x) such that S(x)dx is the mass in a strip of width
dx passing a radius x from the projected centre. Show that

S(x) = 2
∫ ∞

x

Σ(R)RdR√
R2 − x2

.

Hence show that the strip density and the mass density are related by

ρ(x) = − 1
2πx

dS

dx
.

Finally, show that the gravitational potential energy may be written

W = −2G
∫ ∞

0
[S(x)]2dx.
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2 (a) Let f be the distribution function of a collisionless, stellar system with density
ρ moving in a gravitational potential φ. Let us use angled brackets to define averages over
the distribution function in velocity space, for example

〈vi〉 =
1
ρ

∫
vif d

3v .

Derive the Jeans equations in the form

ρ
∂〈vj〉
∂t

+ ρ 〈vi〉 ∂〈vj〉
∂xi

= −ρ ∂φ

∂xj
− ∂(ρσ2

ij)
∂xi

,

where the velocity dispersion tensor σ2
ij = 〈(vi − 〈vi〉)(vj − 〈vj〉)〉 . What is the analogue

of the Jeans equations for a fluid system?

(b) Let us consider a tracer population of stars with density ρ moving in the
gravitational potential of a spherical dark halo φ . The Jeans equations in spherical polar
coordinates may be written

dρi 〈v2
r 〉

dr
+
ρ

r

(
2 〈v2

r 〉 − 〈v2
θ 〉 − 〈v2

φ〉
)

= −ρ dφ
dr

It is known that the distribution function of the stars depends on binding energy E alone,
and that the radial velocity dispersion is constant, 〈v2

r 〉 = σ2
0

Show that

ρ = ρ0 exp
(
ψ

σ2
0

)
,

where ρ0 is a constant and ψ = −φ . Hence, demonstrate that the stellar population has
a distribution function

f(E) =
ρ0

(2π σ2
0)3/2

exp
(
E

σ2
0

)
What distribution of line-of-sight velocities is seen by a spectroscopist?

Hint: You may assume Eddington’s formula in the form

f(E) =
1√
8π2

d

dE

∫ E

−∞

dρ

dψ

dψ√
E − ψ

and are reminded of the standard integral∫ ∞

−∞
exp (−x2) dx =

√
π
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3 (a) Derive the virial theorem for a collisionless self-gravitating stellar system in the
form

2T + W = 0,

where T is the total kinetic energy and W the total potential energy of the system.

Show that the heat capacity of the system is negative.

(b) Now consider a general system of point masses with position vectors ri,
momentum vectors pi and applied forces Fi. Let G be the quantity

G =
∑

i

pi · ri.

Show that
dG

dt
= 2T +

∑
i

Fi · ri

where T is the kinetic energy of the ensemble. By denoting time-averages as angled
brackets, show that

2〈T 〉 =

〈∑
i

Fi · ri

〉
If the only forces are interparticle and derivable from a potential

W =
∑
j 6=i

C|ri − rj |p+1,

where C and p are constants, then show that

2〈T 〉 − (p + 1)〈W 〉 = 0

Hence, find the condition on p that the heat capacity of the system is negative.

Hint: You may assume without proof that

lim
τ→∞

1
τ

[G(τ) − G(0)] = 0
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4 Consider the motion of a planet in the force field

F = −GM⊙
r2

+
C

r3

where r is the radius, G,M⊙ and C are constants. The planet may be considered to
behave as a test particle.

Show that the equation of the orbit can be cast into the form

r =
a(1− e2)

1 + e cos αθ
,

where the constants a, e and α should be defined. Describe the bound orbit when (i)
α = 1 and (ii) α 6= 1. In each case, write down a set of the independent, isolating integrals
of the motion.

When α ≈ 1, derive an approximate expression for the rate of precession of the
perihelion in terms of

η =
aC

GM⊙
After the known perturbations of the other planets are taken into account, the perihelion
of Mercury is observed to precess at the rate of 40′′ per century. Estimate the value of η
that could account for this.

Mercury’s eccentricity is 0.206 and period is 0.24 yr
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