UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Friday, 29 May, 2009 1:30 pm to 4:30 pm

PAPER 6

FINITE DIMENSIONAL LIE ALGEBRAS AND THEIR REPRESENTATIONS

Attempt **ALL** questions. There are **FIVE** questions in total. Question **THREE** carries the most weight. All Lie algebras are over \mathbb{C} .

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(i) Let \mathfrak{g} be an *abelian* Lie algebra. Show that the irreducible representations of \mathfrak{g} are one dimensional, and are parameterized by linear maps $\lambda : \mathfrak{g} \to \mathbb{C}$.

Must every indecomposable representation of \mathfrak{g} be irreducible?

Now let V be an arbitrary finite dimensional representation of \mathfrak{g} . Describe a canonical decomposition $V = \bigoplus_{\lambda} V^{\lambda}$ into submodules.

(ii) Define what it means for a Lie algebra \mathfrak{b} to be *solvable*.

Describe all *irreducible* representations of b. State clearly any theorems you use.

$\mathbf{2}$

Let \mathfrak{g} be a Lie algebra, equipped with a non-degenerate invariant bilinear form (,). Define the Casimir element Ω , and show it commutes with \mathfrak{g} .

Now let $\mathfrak{g} = \mathfrak{sl}_2$. Define an invariant bilinear form, and compute the action of Ω on an irreducible *n*-dimensional representation.

3 Let

$$\mathfrak{g} = \mathfrak{sp}_{2n} = \left\{ A \in Mat_{2n} | AJ + JA^T = 0 \right\}$$

where
$$J = \begin{pmatrix} & & & 1 \\ & & & 1 \\ & & -1 & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \end{pmatrix}$$
, and let $\mathfrak{t} =$ diagonal matrices in \mathfrak{g} .

(i) Decompose \mathfrak{g} as a t-module, and hence write the roots R for \mathfrak{g} . Choose positive roots to be those occurring in upper triangular matrices. Write down the positive roots R^+ , the simple roots π , the highest root θ , and the fundamental weights.

Write down ρ .

Draw the Dynkin diagram and label it by simple roots. Draw the extended Dynkin diagram.

- (ii) Show that $\mathfrak{so}_5 \simeq \mathfrak{sp}_4$.
- (iii) For each root $\alpha \in R$, write the reflection $s_{\alpha} : \mathfrak{t} \to \mathfrak{t}$ explicitly. Describe the Weyl group W (you do not need to prove your answer).
- (iv) Let $V = \mathbb{C}^{2n}$ be the standard representation of \mathfrak{sp}_{2n} . Draw the crystal of V, and of $V \otimes V$. Write the highest weight of each irreducible summand of $V \otimes V$.

UNIVERSITY OF

 $\mathbf{4}$

(i) State the Weyl dimension formula, briefly defining the notation you use.

3

(ii) Draw the root system of G_2 , and the fundamental weights ω_1, ω_2 .

Write down the dimension of the irreducible representation with highest weight $n_1\omega_1 + n_2\omega_2$, $n_1, n_2 \in \mathbb{N}$.

$\mathbf{5}$

- (i) Let V be a representation of \mathfrak{sl}_2 . Define the character of V.
- (ii) Now let \mathfrak{g} be a semisimple Lie algebra. Define the *principal* \mathfrak{sl}_2 inside \mathfrak{g} , and hence the *q*-character of a representation of \mathfrak{g} .
- (iii) Compute the q-character of the adjoint representation of the simple Lie algebra of type G_2 .

END OF PAPER