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1 In the 3+1 formalism for general relativity, we can define the extrinsic curvature of
constant-time hypersurfaces Σ as

Kαβ = Pµ
αP ν

β∇µnν ,

where the projector Pµ
α = δµ

α + nµnα and nµ is the future-pointing unit-normal to Σ
which obeys gµνnµnν = −1.

(i) Calculate nµ and Kαβ explicitly for a flat FRW universe with line element

ds2 = a2(τ)
[−dτ2 + dx2

]
.

Briefly discuss the significance for this model of the trace K = gαβKαβ . [Here, you may
assume Γσ

µν = 1
2gλσ(gµλ,ν + gλν,µ − gµν,λ).]

(ii) The derivative operator Dα on the hypersurface Σ can be defined from the 4D
derivative ∇ν by projecting all indices onto Σ using the projector Pµ

α. Show that Dα

satisfies
Dγ

(
(3)gαβ

)
= 0

where (3)gαβ = gαβ + nαnβ is the induced three-metric on Σ.

In addition, establish the following three simple identities:

nµ∇νnµ = 0 , Kαβ = Pµ
α∇µnβ ,

Pµ
αP ν

β∇µP λ
ν = Kαβ nλ.

(iii) Using the results of (ii), or otherwise, derive the Codazzi equation

DβKβ
α −DαK = Pµ

αRµνnν ,

which relates the extrinsic curvature Kαβ on Σ to the 4D Ricci curvature Rµν . [Here, you
may assume that ∇ν∇µvν −∇µ∇νv

ν = Rµλvλ for any vector vµ.]

Briefly discuss the physical significance of the Codazzi equation as it relates to
Einstein’s equations Rµν − 1

2gµνR = 8πGTµν for the flat FRW model described in (i).
Suggest variables describing the scalar degrees of freedom which would be suitable for
linearising the Codazzi equation about the flat FRW model.
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2 In synchronous gauge for linear perturbations about a flat (k = 0) FRW background,
the metric is taken to be ds2 = a2(τ)

[−dτ2 + (δij + hij) dxidxj
]
, where |det(hij)| ≪ 1

and primes (e.g. a′) denote differentiation with respect to the conformal time τ .

(i) The coordinate transformation (t, xi) −→ (̃t, x̃i) = (t + ξ0, xi + ξi) , (where the scalar
part is ξi ≡ ∂iλ), induces a gauge transformation in the metric perturbations,

δg̃µν = δgµν − ḡµν,λ ξλ − ḡλν ξλ
,µ − ḡµλ ξλ

,ν .

Show that there is a residual gauge freedom in synchronous gauge given by the coordinate
transformation,

ξ0 =
C(xi)

ā
, λ = C(xi)

∫
1
a

dτ + D(xi) ,

where C and D are arbitrary functions of xi only. Briefly discuss the significance of this
gauge freedom for the density perturbation δ ≡ δρ/ρ̄ during the standard hot big bang.

(ii) In a comoving frame, the cold dark matter density perturbation δc and the trace of
the metric perturbation h = hii are related by δc = −1

2h and the density perturbation
evolution equation becomes

δ′′c +
a′

a
δ′c −

3
2

(
a′

a

)2

Ωc δc = 0 , (†)

where the density parameter is Ωc ≡ (8π G ρ̄c/3)(a/a′)2 .

• Show that the density perturbation in synchronous gauge here is directly related to
changes in the comoving volume.

• Find the growing and decaying mode solutions for δc in the matter-dominated era,
that is, after equal-matter radiation when a ∝ τ2 (τ > τeq).

• During the radiation era (τ < τeq), adiabatic cold dark matter perturbations on
superhorizon scales grow as δc ∝ τ2 (kτ < 2π), but subhorizon perturbations
stagnate, δc ≈ const . (kτ > 2π). Provide brief physical explanations for these
different behaviours.

(iii) In synchronous gauge, the primordial adiabatic perturbation is ζ ≡ 1
6 h−+ 1

3 δc . Given
that the metric (curvature) perturbation h− satisfies

a′

a
h′ +

1
3

k2 h− = 3
(

a′

a

)2

δc ,

show, using the growing mode solution found in (ii), that ζ is approximately constant on
superhorizon scales during the matter era (kτ ≪ 1). Hence, or otherwise, derive a transfer
function T (k) in Fourier space to project forward a primordial adiabatic perturbation to
give the density perturbation today, that is,

δc(k, τ0) = T (k) ζ(k, τi) ,
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in the case where the perturbation comes inside the horizon after matter-radiation equality
(τ > τeq). Find and justify the analogous transfer function for perturbations coming inside
the horizon prior to equal matter-radiation (τ < τeq). For a primordial scale-invariant
power spectrum Pζ(k, τi) ≡ 〈|ζ(k, τi)|2〉 = A/k3 (A is a constant), use this transfer function
to find the power spectrum for δc today.
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3 The collisional Boltzmann equation (assuming isotropic scattering) for the photon
brightness ∆ in synchronous gauge is

∆′ + ikµ∆ = −4
3

[
1
2h′ + 1

2(3µ2 − 1)h′S
]
+ aσTne(δγ + 4µ(θγ − θb)/k2 −∆) , (∗)

where k is the wavevector (k = |k|, k̂ = k/k)), µ = k̂ · n̂ with n̂ the photon propagation
direction, σT is the Thomson cross-section, ne is the electron density, h and hS are
the scalar metric perturbations, δγ is the photon density perturbation, and θγ and θb

are the velocity potentials for the photons and baryons respectively. Ignoring metric
perturbations, moment expansion of (∗) yields equations for δγ , θγ and the shear viscosity
σγ (terminating at ℓ = 2):

δ′γ − 4
3k2θγ = 0 , θ′γ + 1

4δγ − σγ = −aneσT(θγ − θb)/k2 ,

σ′
γ + 4

15k2θγ = −aneσTσγ .

The corresponding equations for the coupled baryons are

δ′b + k2θb = 0 , θ′b + a′
a θb + c2

sbδb = −RaneσT(θb − θγ)/k2 ,

where csb is the baryon sound speed and R is given in terms of the relative background
photon and baryon densities R = (4/3)ρ̄γ/ρ̄b.

(i) Briefly explain the origin of the collision terms and the metric perturbation terms on
the right hand side of equation (∗). [Do not derive these.] Why can we ignore higher
moments (ℓ > 2) if the collision term aσTne is large?

(ii) For initially adiabatic perturbations, while the photons and baryons are tightly coupled
we will have δγ ≈ 4

3δb and θγ ≈ θb. Show that in this limit, the photon and baryon
evolution equations can be combined to become

δ′γ =
4
3
k2θγ , θ′γ = −3c2

s

(
1
4δγ − σγ

)− 3c2
s

R

(
a′

a
θγ +

3
4
c2
sbδγ

)
,

where the effective sound speed is given by c2
s ≡ 1

3
R

1+R = 1
3

(
1 + 3

4
ρ̄b
ρ̄γ

)−1
.

(iii) In the limit that decoupling is in the matter era (cold dark matter Ωc ≈ 1 and a ∝ τ2)
with ρ̄γ ≫ ρ̄b, show that the tight coupling equations can be combined to yield

δ′′γ − 4
3k2σγ + 1

3k2δγ = 0 .

Assuming that σ′
γ ≈ 0, show that this becomes

δ′′γ +
4
15

τck
2δ′γ +

1
3
k2δγ = 0 ,

where τc = (aσTne)−1. Find general solutions of this equation (ignoring terms of O(τ2
c ))

and show that for subhorizon scales they take the following approximate form

δγ(k, τ) ≈
[
A(k) cos(kτ/

√
3) + B(k) sin(kτ/

√
3))

]
exp(−k2/k2

D) ,

where kD is a time-dependent damping scale which you should specify.

(iv) Use the solution obtained in (iii), or otherwise, to describe the effect on the angular
power spectrum of the temperature anisotropy ∆T

T which arises from intrinisic photon den-
sity fluctuations and relative motions.
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