UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Monday, 8 June, 2009 9:00 am to 11:00 am

PAPER 57

ADVANCED COSMOLOGY

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 In the 3+1 formalism for general relativity, we can define the extrinsic curvature of constant-time hypersurfaces Σ as

$$K_{\alpha\beta} = P^{\mu}{}_{\alpha}P^{\nu}{}_{\beta}\nabla_{\mu}n_{\nu}\,,$$

where the projector $P^{\mu}{}_{\alpha} = \delta^{\mu}{}_{\alpha} + n^{\mu}n_{\alpha}$ and n^{μ} is the future-pointing unit-normal to Σ which obeys $g_{\mu\nu}n^{\mu}n^{\nu} = -1$.

(i) Calculate n^{μ} and $K_{\alpha\beta}$ explicitly for a flat FRW universe with line element

$$ds^2 = a^2(\tau) \left[-d\tau^2 + d\mathbf{x}^2 \right] \,.$$

Briefly discuss the significance for this model of the trace $K = g^{\alpha\beta}K_{\alpha\beta}$. [Here, you may assume $\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2}g^{\lambda\sigma}(g_{\mu\lambda,\nu} + g_{\lambda\nu,\mu} - g_{\mu\nu,\lambda})$.]

(ii) The derivative operator \mathcal{D}_{α} on the hypersurface Σ can be defined from the 4D derivative ∇_{ν} by projecting all indices onto Σ using the projector $P^{\mu}{}_{\alpha}$. Show that \mathcal{D}_{α} satisfies

$$\mathcal{D}_{\gamma}\left({}^{(3)}g_{\alpha\beta}\right) = 0$$

where ${}^{(3)}g_{\alpha\beta} = g_{\alpha\beta} + n_{\alpha}n_{\beta}$ is the induced three-metric on Σ .

In addition, establish the following three simple identities:

$$n^{\mu}\nabla_{\nu}n_{\mu} = 0, \qquad K_{\alpha\beta} = P^{\mu}{}_{\alpha}\nabla_{\mu}n_{\beta}, P^{\mu}{}_{\alpha}P^{\nu}{}_{\beta}\nabla_{\mu}P^{\lambda}{}_{\nu} = K_{\alpha\beta} n^{\lambda}.$$

(iii) Using the results of (ii), or otherwise, derive the Codazzi equation

$$\mathcal{D}_{\beta}K^{\beta}{}_{\alpha} - \mathcal{D}_{\alpha}K = P^{\mu}{}_{\alpha}R_{\mu\nu}n^{\nu}\,,$$

which relates the extrinsic curvature $K_{\alpha\beta}$ on Σ to the 4D Ricci curvature $R_{\mu\nu}$. [Here, you may assume that $\nabla_{\nu}\nabla_{\mu}v^{\nu} - \nabla_{\mu}\nabla_{\nu}v^{\nu} = R_{\mu\lambda}v^{\lambda}$ for any vector v^{μ} .]

Briefly discuss the physical significance of the Codazzi equation as it relates to Einstein's equations $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$ for the flat FRW model described in (i). Suggest variables describing the *scalar* degrees of freedom which would be suitable for linearising the Codazzi equation about the flat FRW model.

CAMBRIDGE

2 In synchronous gauge for linear perturbations about a flat (k = 0) FRW background, the metric is taken to be $ds^2 = a^2(\tau) \left[-d\tau^2 + (\delta_{ij} + h_{ij}) dx^i dx^j \right]$, where $|\det(h_{ij})| \ll 1$ and primes (e.g. a') denote differentiation with respect to the conformal time τ .

(i) The coordinate transformation $(t, x^i) \longrightarrow (\tilde{t}, \tilde{x}^i) = (t + \xi^0, x^i + \xi^i)$, (where the scalar part is $\xi^i \equiv \partial^i \lambda$), induces a gauge transformation in the metric perturbations,

$$\delta \tilde{g}_{\mu
u} \,=\, \delta g_{\mu
u} - ar{g}_{\mu
u,\lambda} \, \xi^{\lambda} - ar{g}_{\lambda
u} \, \xi^{\lambda}_{,\mu} - ar{g}_{\mu\lambda} \, \xi^{\lambda}_{,
u} \,.$$

Show that there is a residual gauge freedom in synchronous gauge given by the coordinate transformation,

$$\xi^0 = \frac{C(x^i)}{\bar{a}}, \qquad \lambda = C(x^i) \int \frac{1}{a} d\tau + D(x^i),$$

where C and D are arbitrary functions of x^i only. Briefly discuss the significance of this gauge freedom for the density perturbation $\delta \equiv \delta \rho / \bar{\rho}$ during the standard hot big bang.

(ii) In a comoving frame, the cold dark matter density perturbation δ_c and the trace of the metric perturbation $h = h_{ii}$ are related by $\delta_c = -\frac{1}{2}h$ and the density perturbation evolution equation becomes

$$\delta_{\rm c}^{\prime\prime} + \frac{a^{\prime}}{a} \,\delta_{\rm c}^{\prime} - \frac{3}{2} \left(\frac{a^{\prime}}{a}\right)^2 \Omega_{\rm c} \,\delta_{\rm c} = 0\,, \qquad (\dagger)$$

where the density parameter is $\Omega_{\rm c} \equiv (8\pi G \bar{\rho}_{\rm c}/3)(a/a')^2$.

- Show that the density perturbation in synchronous gauge here is directly related to changes in the comoving volume.
- Find the growing and decaying mode solutions for $\delta_{\rm c}$ in the matter-dominated era, that is, after equal-matter radiation when $a \propto \tau^2$ ($\tau > \tau_{\rm eq}$).
- During the radiation era ($\tau < \tau_{eq}$), adiabatic cold dark matter perturbations on superhorizon scales grow as $\delta_c \propto \tau^2$ ($k\tau < 2\pi$), but subhorizon perturbations stagnate, $\delta_c \approx \text{const.}$ ($k\tau > 2\pi$). Provide brief physical explanations for these different behaviours.

(iii) In synchronous gauge, the primordial adiabatic perturbation is $\zeta \equiv \frac{1}{6}h^- + \frac{1}{3}\delta_c$. Given that the metric (curvature) perturbation h^- satisfies

$$\frac{a'}{a}h' + \frac{1}{3}k^2h^- = 3\left(\frac{a'}{a}\right)^2\delta_{\rm c}\,,$$

show, using the growing mode solution found in (ii), that ζ is approximately constant on superhorizon scales during the matter era ($k\tau \ll 1$). Hence, or otherwise, derive a transfer function T(k) in Fourier space to project forward a primordial adiabatic perturbation to give the density perturbation today, that is,

$$\delta_{\rm c}(\mathbf{k},\tau_0) = T(k)\,\zeta(\mathbf{k},\tau_i)\,,$$

Part III, Paper 57

[TURN OVER

UNIVERSITY OF

in the case where the perturbation comes inside the horizon after matter-radiation equality $(\tau > \tau_{eq})$. Find and justify the analogous transfer function for perturbations coming inside the horizon prior to equal matter-radiation $(\tau < \tau eq)$. For a primordial scale-invariant power spectrum $P_{\zeta}(k, \tau_i) \equiv \langle |\zeta(\mathbf{k}, \tau_i)|^2 \rangle = A/k^3$ (A is a constant), use this transfer function to find the power spectrum for δ_c today.

CAMBRIDGE

3 The collisional Boltzmann equation (assuming isotropic scattering) for the photon brightness Δ in synchronous gauge is

$$\Delta' + ik\mu\Delta = -\frac{4}{3} \left[\frac{1}{2}h' + \frac{1}{2}(3\mu^2 - 1)h'_{\rm S} \right] + a\sigma_{\rm T} n_{\rm e}(\delta_{\gamma} + 4\mu(\theta_{\gamma} - \theta_{\rm b})/k^2 - \Delta) \,, \qquad (*)$$

where \mathbf{k} is the wavevector $(k = |\mathbf{k}|, \hat{\mathbf{k}} = \mathbf{k}/k)$, $\mu = \hat{\mathbf{k}} \cdot \hat{\mathbf{n}}$ with $\hat{\mathbf{n}}$ the photon propagation direction, σ_T is the Thomson cross-section, n_e is the electron density, h and h_S are the scalar metric perturbations, δ_{γ} is the photon density perturbation, and θ_{γ} and θ_b are the velocity potentials for the photons and baryons respectively. Ignoring metric perturbations, moment expansion of (*) yields equations for δ_{γ} , θ_{γ} and the shear viscosity σ_{γ} (terminating at $\ell = 2$):

$$\begin{split} \delta_{\gamma}' &- \frac{4}{3}k^2\theta_{\gamma} = 0 \,, \qquad \theta_{\gamma}' + \frac{1}{4}\delta_{\gamma} - \sigma_{\gamma} = -an_{\rm e}\sigma_{\rm T}(\theta_{\gamma} - \theta_{\rm b})/k^2 \,, \\ \sigma_{\gamma}' &+ \frac{4}{15}k^2\theta_{\gamma} = -an_{\rm e}\sigma_{\rm T}\sigma_{\gamma} \,. \end{split}$$

The corresponding equations for the coupled baryons are

$$\delta_{\rm b}' + k^2 \theta_{\rm b} = 0, \qquad \qquad \theta_{\rm b}' + \frac{a'}{a} \theta_{\rm b} + c_{\rm sb}^2 \delta_{\rm b} = -Ran_{\rm e} \sigma_{\rm T} (\theta_{\rm b} - \theta_{\gamma})/k^2,$$

where $c_{\rm sb}$ is the baryon sound speed and R is given in terms of the relative background photon and baryon densities $R = (4/3)\bar{\rho}_{\gamma}/\bar{\rho}_{\rm b}$.

(i) Briefly explain the origin of the collision terms and the metric perturbation terms on the right hand side of equation (*). [Do not derive these.] Why can we ignore higher moments $(\ell \ge 2)$ if the collision term $a\sigma_{\rm T}n_{\rm e}$ is large?

(ii) For initially adiabatic perturbations, while the photons and baryons are tightly coupled we will have $\delta_{\gamma} \approx \frac{4}{3}\delta_{\rm b}$ and $\theta_{\gamma} \approx \theta_{\rm b}$. Show that in this limit, the photon and baryon evolution equations can be combined to become

$$\delta_{\gamma}' = \frac{4}{3}k^2\theta_{\gamma}, \qquad \theta_{\gamma}' = -3c_{\rm s}^2\left(\frac{1}{4}\delta_{\gamma} - \sigma_{\gamma}\right) - \frac{3c_{\rm s}^2}{R}\left(\frac{a'}{a}\theta_{\gamma} + \frac{3}{4}c_{\rm sb}^2\delta_{\gamma}\right),$$

where the effective sound speed is given by $c_{\rm s}^2 \equiv \frac{1}{3}\frac{R}{1+R} = \frac{1}{3}\left(1 + \frac{3}{4}\frac{\bar{\rho}_{\rm b}}{\bar{\rho}_{\gamma}}\right)^{-1}$.

(iii) In the limit that decoupling is in the matter era (cold dark matter $\Omega_{\rm c} \approx 1$ and $a \propto \tau^2$) with $\bar{\rho}_{\gamma} \gg \bar{\rho}_{\rm b}$, show that the tight coupling equations can be combined to yield

$$\delta_{\gamma}^{\prime\prime} - \frac{4}{3}k^2\sigma_{\gamma} + \frac{1}{3}k^2\delta_{\gamma} = 0.$$

Assuming that $\sigma'_{\gamma} \approx 0$, show that this becomes

$$\delta_{\gamma}^{\prime\prime} + \frac{4}{15}\tau_{\rm c}k^2\delta_{\gamma}^{\prime} + \frac{1}{3}k^2\delta_{\gamma} = 0\,,$$

where $\tau_{\rm c} = (a\sigma_{\rm T}n_{\rm e})^{-1}$. Find general solutions of this equation (ignoring terms of $\mathcal{O}(\tau_{\rm c}^2)$) and show that for subhorizon scales they take the following approximate form

$$\delta_{\gamma}(\mathbf{k},\tau) \approx \left[A(\mathbf{k}) \cos(k\tau/\sqrt{3}) + B(\mathbf{k}) \sin(k\tau/\sqrt{3})) \right] \exp(-k^2/k_{\rm D}^2) \,,$$

where $k_{\rm D}$ is a time-dependent damping scale which you should specify.

(iv) Use the solution obtained in (iii), or otherwise, to describe the effect on the angular power spectrum of the temperature anisotropy $\frac{\Delta T}{T}$ which arises from intrinsic photon density fluctuations and relative motions.

[TURN OVER

6

END OF PAPER