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A variant of general relativity admits an electrically charged black hole solution with
metric

ds2 = −H(r)−1/2F (r)dt2 + H(r)1/2
[
F (r)−1dr2 + r2dΩ2

]
,

H(r) = 1 +
2m sinh2 α

r
, F (r) = 1− 2m

r
,

where m and α are real constants with m > 0.

(a) Calculate the Komar mass of this solution. [4]

(b) Show that one can define a quantity r∗ such that u = t−r∗ and v = t+r∗ are constant
on outgoing and ingoing radial null geodesics respectively. (You may express r∗ as an
integral.) [2]

(c) Obtain the above metric in ingoing Eddington-Finkelstein coordinates (v, r, θ, φ).
Hence show that it can be analytically extended through r = 2m. [2]

(d) Define the black hole region of an asymptotically flat spacetime. Prove that the region
r < 2m (in ingoing Eddington-Finkelstein coordinates) is within the black hole region,
and that the region r > 2m does not intersect the black hole region. [5]

(e) Show that the surface r = 2m is a Killing horizon of the stationary Killing vector field,
and determine the surface gravity κ. [5]

(f) Define Kruskal coordinates U = −e−κu, V = eκv. Hence show that r = 2m is a
bifurcate Killing horizon. (You will need to consider the behaviour of r∗ for r ≈ 2m.) [8]

(g) Deduce the Penrose diagram for this solution. (You may assume that there is a
curvature singularity at r = 0.) Describe briefly how the global structure of this solution
differs from that of an non-extreme electrically charged Reissner-Nordstrom black hole.[4]
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(a) Define what it means for an asymptotically flat spacetime to be stationary and
axisymmetric. [2]

(b) Consider an isolated uncharged star that undergoes gravitational collapse to form a
black hole. Explain carefully why the final state is characterized by only two parameters.[6]

(c) In Boyer-Lindquist coordinates, the Kerr solution is

ds2 = −(∆− a2 sin2 θ)
Σ

dt2 − 2a sin2 θ

(
r2 + a2 −∆

Σ

)
dt dφ

+
(

(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdφ2 +

Σ
∆

dr2 + Σdθ2,

where ∆ = r2 − 2Mr + a2, Σ = r2 + a2 cos2 θ.

Consider the case M > a > 0 describing a Kerr black hole.

(i) Show that a timelike or null geodesic with zero energy cannot intersect the region
outside the ergosphere. [2]

(ii) Is the outer surface of the ergosphere a Killing horizon? Explain your answer.[3]

(d) For the Kerr solution with 0 < M < a, Kerr-Schild coordinates (t̃, x, y, z) are defined
by

x + iy = (r + ia) sin θ exp
(

iφ + ia

∫
dr

∆

)
,

z = r cos θ

t̃ = t− r +
∫

(r2 + a2)
∆

dr.

In these coordinates, the metric is

ds2 = −dt̃2 + dx2 + dy2 + dz2

+
2Mr3

r4 + a2z2

[
r(xdx + ydy)− a(xdy − ydx)

r2 + a2
+

zdz

r
+ dt̃

]2

(i) Describe how to construct a maximal analytic extension of this solution. You
may assume that there is a curvature singularity where Σ = 0. [10]

(ii) Show that this spacetime contains closed timelike curves. [4]

(e) Could the closed timelike curves of the Kerr solution occur in Nature? Answer briefly,
distinguishing between the cases 0 < M < a and M > a > 0. [3]
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(a) What is a null geodesic congruence? Define the expansion θ, shear σ̂ and rotation ω̂
of a null geodesic congruence. [4]

(b) Show that ω̂ = 0 if, and only if, the congruence is hypersurface-orthogonal. [3]

(c) Explain the geometrical significance of θ and σ̂ (you may restrict attention to the case
ω̂ = 0) and state an equation relating θ to the rate of increase of the area of an infinitesimal
surface element. [3]

(d) In the Schwarzschild spacetime, consider the null geodesic congruence consisting of
ingoing radial null geodesics. Let Ua be the tangent to the affinely parametrized geodesics.

(i) Find a vector field Na obeying N2 = 0, N ·U = −1 and U ·∇Na = 0 everywhere.
(Hint: use ingoing Eddington-Finkelstein coordinates, and assume that Na is spherically
symmetric, i.e. N θ = Nφ = 0.) [5]

(ii) Calculate the expansion, shear and rotation of this congruence. [5]

(e) State the second law of black hole mechanics. Give a proof of the second law, starting
from Raychaudhuri’s equation:

dθ

dλ
= −1

2
θ2 − σ̂2 + ω̂2 −RabU

aU b.

You should state clearly any result you assume regarding conjugate points. You may
assume that the generators of the future horizon are complete to the future. [10]

4

(a) Write an essay giving a detailed account of the quantum theory of a free scalar field
in a globally hyperbolic spacetime. You should explain carefully why the particle concept
is ambiguous in general and why it can be made unambiguous in a stationary spactime.
Describe how to calculate the expected number of particles produced in a spacetime that
is stationary at early and late times but time-dependent in between. [22]

(b) Explain why the discovery that black holes emit thermal radiation implies that the
laws of black hole mechanics can be reinterpreted in thermodynamical terms. [8]
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