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1 The Robertson-Walker line element for a homogeneous, isotropic universe with
vanishing spatial curvature is

ds2 = dt2 − a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
.

(a) When the energy-momentum tensor takes a perfect fluid form with energy density ρ
and pressure P , the Einstein equation implies that the scale factor a(t) evolves as:

ȧ2 =
8πG

3
ρa2 ,

where the overdot denotes a derivative with respect to time t. Find the values of the
redshift zc such that galaxies observed in opposite directions (e.g. towards the North Pole
and towards the South Pole) with z > zc cannot have communicated causally with each
other in two cases:

1. when the energy density is dominated by non-relativistic matter with negligible
pressure; and

2. when the energy density is dominated by radiation.

(b) Consider a universe filled with a fine network of domain walls (planar surfaces of
constant energy per unit area) such that, coarse grained over macroscopic scales, the
energy distribution is homogeneous and isotropic. Suppose that, as the universe expands,
the surfaces of the domain walls and the network as a whole stretch uniformly in proportion
to the scale factor, while the energy per unit area of the walls remains constant.

1. Suppose the energy density of the universe comes from these walls, and the universe
is flat. By considering how the energy density varies with the scale factor, determine
H0t0 where H0 is the present-day Hubble constant and t0 is the current age of the
universe.

2. Is this universe accelerating or decelerating?

3. At time t0 (when the Hubble parameter is H0) a light signal is sent out in the
hope of getting back a return signal some time in the future. What is the maximum
physical distance (as evaluated at time t0) from which a return signal can be received,
assuming that the return signal is sent out as soon as the incoming signal is received?
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2 Recall that Einstein’s general relativity is a theory of gravity described in vacuum
by the Hilbert Lagrangian LH = −RE/2, where RE is the Ricci scalar in Einstein gravity.
Consider a modified theory of gravity, with a generalized Lagrangian

Lg = f(R) ,

where R is the Ricci scalar of this theory. In vacuum, the field equations obtained by
varying the action associated with Lg with respect to the 4-dimensional spacetime metric
gµν can be written in the form

f ′ (Rµν − 1
2Rgµν

)
+ 1

2gµν

(
Rf ′ − f

)−∇µ∇νf
′ + gµν�f ′ = 0 ,

where � = gµν∇µ∇ν , ∇µ is the covariant derivative, and f ′ = df/dR. Consider the
conformal transformation

g̃µν = Ω2gµν ,

where Ω is a smooth, strictly positive function chosen such that Ω2 = −f ′(R). Under this
transformation, the Ricci tensor transforms as

R̃µν = Rµν +
3
2

1
f ′2∇µf ′∇νf

′ − 1
f ′∇µ∇νf

′ − 1
2
gµν

1
f ′ �f ′ .

(a) Write down the transformed Ricci scalar R̃ = g̃µνR̃µν . Hence, derive the transformed
R̃µν − 1

2 g̃µνR̃.

(b) Let us introduce a scalar field φ, defined by φ =
√

3
2 ln [−f ′(R)]. By writing down

the stress-energy tensor Tµν for a scalar field with potential V (φ) minimally coupled to
Einstein gravity with action Sφ,

Tµν =
2√−g̃

δSφ

δg̃µν
,

or otherwise, show that the conformally-transformed vacuum field equations in f(R)
gravity correspond to the Einstein equations for a scalar field source with potential

V (φ) =
Rf ′ − f

2f ′2 .

(c) What is the form of the potential corresponding to f(R) = −(R + 2Λ)/2, i.e. general
relativity with a cosmological constant?

[In this question, assume ~ = c = 8πG = 1. Note also that the action for a minimally-
coupled scalar field is

Sφ =
∫

d4x
√−g

(
1
2
gµν∂µφ∂νφ− V (φ)

)
.

]
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3 In the early universe the Hubble parameter is

H =
1.66

√
g∗T 2

mPl
,

where the Planck mass, mPl ≈ 1019 GeV.

(a) A theory of weak interactions predicts a new, additional species of massless neutrino
with interaction rate Γ = G2

AT 5, where GA = 10−12 GeV−2. Estimate the temperature at
which these neutrinos decouple from thermal equilibrium. (You may assume that g∗ ∼ 100
above the electroweak phase transition.)

(b) Evaluate the temperature today of these neutrinos relative to the photon temperature
explaining your reasoning. (You will need to compute g∗ at all appropriate epochs.)
Estimate the proportion of the total entropy density in these new neutrinos.

(c) A variant of this theory predicts the new neutrinos to have a small mass. Discuss the
constraints imposed by standard cosmology on the mass.
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4 Consider a simple cosmological model described by linear, scalar perturbations
about a spatially flat Robertson-Walker metric. The only matter present is an ideal fluid
and the cosmological constant may be ignored.

(a) Explain why the perturbed line element can be written as

ds2 = a2(η)
[
(1 + 2φ)dη2 − (1− 2φ)δijdxidxj

]
.

(b) The perturbed Einstein equations are

∇2φ− 3H
(
φ̇ +Hφ

)
= 4πGa2ρ̄δ ,

φ̇ +Hφ = −4πGa2(ρ̄ + P̄ )v ,

φ̈ + 3Hφ̇ +
(
2Ḣ +H2

)
φ = 4πGa2(δP ) ,

where ρ is the energy density (with fractional perturbation δ), P is the pressure (with
perturbation δP ) and ∂iv is the peculiar velocity of the fluid. The unperturbed energy
density and pressure are denoted by ρ̄ and P̄ respectively. Overdots denote differentiation
with respect to conformal time η and H ≡ ȧ/a.

For a fluid with constant equation of state w, i.e. P = wρ, show that a ∝ η2/(1+3w), for
w 6= −1/3, and so a2ρ̄ ∝ η−2. Hence, or otherwise, use the Einstein equations to show
that the comoving-gauge density contrast, ∆ ≡ δ − 3H(1 + P̄ /ρ̄)v, evolves as

∆̈ +
2(1− 3w)
(1 + 3w)η

∆̇− 6(1 − w)
(1 + 3w)η2

∆−w∇2∆ = 0 .

(c) For a radiation fluid (w = 1/3), solve this equation in Fourier space for a mode with
comoving wavenumber k in the limiting cases that the mode is well outside the sound
horizon and well inside. Assuming that ∆ is regular at early times, describe the evolution
of a given Fourier mode from early times (kη/

√
3≪ 1) to late times (kη/

√
3≫ 1).

(d) For a pressure-free fluid, show that ∆ has solutions going like a and a−3/2. Find how
the peculiar velocity (potential) of the fluid, v, evolves with scale factor in the growing
mode (∆ ∝ a).
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5 The equations of motion for a flat Robertson-Walker cosmology containing a
homogeneous scalar field, Φ(t), with potential energy density V (Φ) are

∂2
t Φ + 3H∂tΦ + V ′ = 0 , H2 =

1
3M2

Pl

(
V +

1
2
(∂tΦ)2

)
,

where V ′ ≡ dV/dΦ, H is the Hubble parameter and MPl is the reduced Planck mass.

(a) Show that 2M2
Pl∂tH = −(∂tΦ)2.

(b) Briefly describe the mechanism by which inflation produces fluctuations in the
comoving curvature perturbation, R, on super-Hubble scales.

(c) The power spectrum of these fluctuations is

PR(k) =
(

H2

2π∂tΦ

)2

,

where the right-hand side is evaluated at Hubble exit (k = aH). Using the slow-roll
approximation, (∂tΦ)2 ≪ V and 3H∂tΦ ≈ −V ′, show that

PR(k) ≈ 8
3ǫV

(
V 1/4

√
8πMPl

)4

,

where ǫV ≡ M2
Pl
2

(
V ′
V

)2
.

(d) Show also that the spectral index, defined by ns(k) ≡ 1 + d lnPR(k)/d ln k, is

ns(k) ≈ 1− 6ǫV + 2ηV ,

where ηV ≡M2
Pl

V ′′
V .

(e) Show further that
dns/d ln k ≈ 16ǫV ηV − 24ǫ2

V − 2ξ2
V ,

where ξ2
V ≡M4

Pl
V ′V ′′′

V 2 .
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