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1 Paradigms and Objectives for Quantum Control

(a) Sketch a simple block-diagram of a control system. Explain what is special
(compared to the classical case) about the roles the sensors (measurements), actuators and
environment play when the system to be controlled is governed by the laws of quantum
physics. Briefly explain the difference between open-loop and closed-loop control.

(b) Describe three typical objectives of quantum control. (Give mathematical
definitions.)

(c) Briefly explain in about one sentence each the general meaning of the notions of
reachable sets and controllability in control theory, and explain how these notions can be
applied to (Hamiltonian) quantum control systems, e.g., in the context of quantum state
or process engineering.

(d) One paradigm for quantum control is Hamiltonian engineering. Briefly explain
the general idea as well as three different approaches to (model-based) open-loop Hamil-
tonian engineering discussed in the lectures.

(e) Open-loop Hamiltonian engineering entirely based on a model of the system
struggles in the presence of model uncertainty. Explain how we can avoid or mitigate this
problem using adaptive closed-loop experiments. Consider how to formulate the problem
mathematically as an optimal control problem and how we might solve the latter without
recourse to a model, using only experimental data.
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2 Bloch vectors and Bloch equation.

Let H be an N -dimensional (complex) Hilbert space and B(H) be bounded
operators (matrices) on H. Define the Hilbert-Schmidt (HS) inner product for operators
A,B ∈ B(H) by 〈A|B〉 = Tr(A†B) and let {σk}N2

k=1 be an orthonormal basis (w.r.t. the
HS inner product) for the Hermitian matrices on H, with σN2 = 1√

N
I, where I is the

identity matrix.

(a) Show that any operator A ∈ B(H) can be written as A =
∑N2

k=1 akσk with
ak = Tr(σkA), and show that the coordinate vector a = (a1, . . . , aN2) is real if A is
Hermitian.

(b) Show that the coordinate vector for any density operator ρ is real with
rN2 = 1√

N
, and that the Bloch vector, s = (r1, . . . , rN2−1) satisfies ‖s‖ 6

√
1− 1/N ,

where ‖A‖ =
√

Tr(A†A) is the HS norm, with equality if and only if ρ is a rank-1 projector
(pure state).

(c) The previous part shows that all pure states are contained in a sphere of radius√
1− 1/N in RN2−1. Show that the set of pure states is a proper subset of the sphere

except for N = 2.

(d) Let us consider the dynamics. Assume ρ satisfies the quantum Liouville equation
(~ = 1)

ρ̇(t) = −i[H, ρ(t)] +
∑

d

D[Vd]ρ(t), D[V ]ρ = V ρV † − 1
2
(V †V ρ + ρV †V ). (1)

Show that the coordinate vector r of ρ satisfies the matrix differential equation ṙ(t) =
(L+

∑
d D(d))r(t) where L and D(d) are N2 ×N2 matrices with

Lmn = Tr(+iH[σm, σn]), D(d)
mn = Tr(V †

d σmVdσn)− 1
2

Tr(V †
d Vd{σm, σn}) (2)

where [A,B] = AB − BA is the usual matrix commutator and {A,B} = AB + BA the
anticommutator. Furthermore show that ṙN2 = 0 and Bloch vector s satisfies an affine
linear equation ṡ = As + c.

(e) Show that for Hamiltonian systems, i.e., all Vd = 0, the evolution of the Bloch
vector corresponds to a rotation. (Hint: Show that L and hence A is real anti-symmetric
and c = 0.)

(f) Assume Vd = 0 for all d (Hamiltonian dynamics) and the Hamiltonian H = H[f ]
depends on external controls f in such a way that the system is (density matrix)
controllable. Is the state s1 = (0, 0, 1)/

√
2 reachable from the initial state s0 =

(0.5, 0.5, 0)/
√

2 for N = 2? Explain why or why not.
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3 Markovian reservoir engineering.

Let ρ be a density operator on a (complex) Hilbert space H of dimension N < ∞,
and let s = (s1, . . . , sN2−1) with sk = Tr(ρσk) be the coordinate vector (Bloch vector) with
respect to a (not necessarily orthonormal) basis {σk}N2−1

k=1 for the trace-zero Hermitian
matrices on H. If ρ satisfies the quantum Liouville equation (~ = 1)

ρ̇(t) = −i[H, ρ(t)] +
∑

d

D[Vd]ρ(t), D[V ]ρ = V ρV † − 1
2
{V †V, ρ}, (1)

where [A,B] = AB − BA is the usual matrix commutator and {A,B} = AB + BA the
anticommutator, then the corresponding Bloch vector s satisfies an affine-linear matrix
differential equation ṡ(t) = As + c. (You may use this result without proof.)

(a) Define the notion of a steady state and characterize the steady states of the
Bloch equation ṡ(t) = As(t)+c as a linear equation in terms of, e.g., the rank of A. Does
the Bloch equation always have a steady state? When does the Bloch equation have a
unique steady state?

(b) Give a necessary and sufficient condition for attractivity of a steady states in
terms of the eigenvalues of A.

(c) The master equation for a system subject to measurement of the operator M
and direct feedback with feedback Hamiltonian F is given by

ρ̇(t) = −i[Htot, ρ(t)] +D[M − iF ]ρ(t) (2)

where Htot = H0+Hc+ 1
2 (M †F +FM). Using this result and assuming H0 = 0, Hc = ασy,

M = σ and F = λσy, where

σ =
(

0 1
0 0

)
, σy = iσ − iσ† =

(
0 i
−i 0

)
, (3)

show that the direct feedback master equation is ρ̇(t) = −i[ασy, ρ(t)] +D[σ − iλσy]ρ(t).

(d) Expanding the single qubit feedback master equation above with respect to the
basis σx = σ + σ†, σy, σz = 1

2 [σx, σy], we obtain the Bloch equation

d

dt

x(t)
y(t)
z(t)

 = −1
2

(2λ + 1)2 0 −4α
0 1 0
4α 0 (2λ + 1)2 + 1

 x(t)
y(t)
z(t)

−
 0

0
2λ + 1

 , (4)

where ⋆(t) = Tr(σ⋆ρ(t)) for ⋆ ∈ {x, y, z} as usual. As y(t) is decoupled (independent of x
and z) and decays exponentially (y(t) = y0e

−1/2t) regardless of the feedback and control
Hamiltonian, consider the reduced dynamics in the (x, z) plane

d

dt

(
x(t)
z(t)

)
= −1

2

(
(2λ + 1)2 −4α

4α (2λ + 1)2 + 1

)(
x(t)
z(t)

)
−

(
0

2λ + 1

)
. (5)

Show that except for (α, λ) = (0,−1
2 ), the reduced system has a unique steady state given

by
xss = −8α(2λ + 1)/D, zss = −2(2λ + 1)3/D, (6)
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where D = (2λ + 1)2[(2λ + 1)2 + 1] + 16α2.

(e) Show that the state (x, z) = (sin θd, cos θd) is a steady state of the system if the
driving and feedback strengths α and λ, respectively, are set to

α =
1
4

sin θd cos θd, λ = −1
2
(1 + cos θd). (7)

(f) Show that the symmetric part of the reduced Bloch matrix A is negative definite
if and only if λ 6= −1

2 . Use this result to show that the distance of any state from the
steady state ‖s(t) − sss‖ is strictly decreasing, and thus that the steady state is globally
attractive, except if the target state is on the equator of the Bloch sphere.

END OF PAPER
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