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The following standard gate notation is used in this paper

H H =
1√
2

(

|0〉 〈0| + |0〉 〈1| + |1〉 〈0| − |1〉 〈1|
)

X X = |0〉 〈1| + |1〉 〈0|

Z Z = |0〉 〈0| − |1〉 〈1|

•
��������

CX = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X

•
•

CZ = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Z

NM

 Computational basis measurement
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1 You are given a unitary oracle implementing an unknown function f : {0, 1}2 →
{0, 1}, such that the computational basis states transform as

|x〉

f

|x〉

|y〉 |y〉

|z〉 |z ⊕ f(x, y)〉

where ⊕ denotes addition modulo 2. We parameterize the possible functions by a, b, c, d ∈
{0, 1}, writing

fabcd(x, y) = axy ⊕ bx⊕ cy ⊕ d.

Consider inserting the oracle in the quantum circuit below, where U is a two-qubit unitary
operation, and measurements are in the computational basis.

|0〉 H

f
U NM



|0〉 H
NM



|0〉 X H

(a) Find the quantum state |ψabcd〉 of the three qubits just after the oracle, given that
the oracle implements fabcd.

(b) Consider the case in which U = H ⊗H. Show that this circuit can distinguish with
certainty the oracles corresponding to the four functions f0001, f0010, f0100, f0110.

(c) Give a U such that the circuit can distinguish the oracles corresponding to f1000,
f1011, f1101, f1111 with certainty.

(d) Calculate 〈ψ0000|ψ1111〉. Hence, prove that there does not exist a U such that the
circuit can distinguish the oracles corresponding to f0000 and f1111 with certainty.

(e) Suppose that instead of a quantum oracle, you are given a classical oracle (that acts
on classical bits in the same way as the quantum oracle acts on computational basis
states). Show that 3 oracle queries are required to distinguish the functions f0001,
f0010, f0100, f0110.
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2 Consider an oracle encoding a function f : {0, 1}n → {0, 1}, that gives a non-zero
output only for a particular input a:

f(x) =

{

1 if x = a

0 if x 6= a
.

We want to find a using Grover’s search algorithm. However, we are also given the promise
that a lies in a small subset A of all possible bit strings, a ∈ A ⊆ {0, 1}n, where A contains
|A| elements. Define the state |ψA〉 as the uniform superposition of all states in A:

|ψA〉 =
1

√

|A|
∑

x∈A

|x〉 .

(a) Consider the 2-dimensional subspace V spanned by |a〉 and |ψA〉. Find a vector
|ω〉 ∈ V such that |a〉 and |ω〉 form an orthonormal basis, and

|ψA〉 = sin(θ) |a〉 + cos(θ) |ω〉

for 0 6 θ 6
π
2
. Find θ as a function of |A|.

(b) The Grover operation is G = −V|ψA〉V|a〉, where

V|ψA〉 = I − 2 |ψA〉 〈ψA| , V|a〉 = I − 2 |a〉 〈a| .

Show that when applied to states in V, G acts as

G = cos(2θ) (|a〉 〈a| + |ω〉 〈ω|) + sin(2θ) (|a〉 〈ω| − |ω〉 〈a|) .

(c) It follows that Gk |ψA〉 = sin ((2k + 1) θ) |a〉 + cos ((2k + 1) θ) |ω〉. Show that the
minimal integer k such that a computational basis measurement on Gk |ψA〉 yields
a with probability > cos2(θ) satisfies

k <
π
√

|A|
4

.

(d) Consider the case in which |A| = 2m for an integer m = O(log2 n). Given that we
can efficiently (i.e. with a circuit of size poly(n)) implement the unitary operation

Ux,y = I − |x〉 〈x| − |y〉 〈y| + |x〉 〈y| + |y〉 〈x| ,

where |x〉 and |y〉 are computational basis states of n+m qubits, show that we can
efficiently prepare |ψA〉.

Part III, Paper 51



5

3 Consider a family of single qubit phase measurements, parameterised by θ, that
are characterised by the measurement operators

M0(θ) = |v0(θ)〉 〈v0(θ)| , M1(θ) = |v1(θ)〉 〈v1(θ)| ,

where

|v0(θ)〉 =
1√
2

(

|0〉 + eiθ |1〉
)

, |v1(θ)〉 =
1√
2

(

|0〉 − eiθ |1〉
)

.

A phase measurement with angle θ that gives result k is denoted :=;<vk(θ) .

(a) Consider the single qubit unitary

U(θ) = |0〉 〈v0(θ)| + |1〉 〈v1(θ)| .

Prove the relations U(θ)Z = XU(θ), and U(θ)X = e−iθZU(−θ).

(b) Consider the following circuit, incorporating a CZ gate:

|ψ〉 • :=;<vk(θ)

|0〉 H • |ψ′〉

Show that |ψ′〉 = XkU(θ) |ψ〉 and that the results k = 0 and k = 1 are equiprobable.

Consider the procedure below, which consists of preparing a four qubit graph state (the
dashed section) then performing a sequence of measurements on it. The lowest qubit is
measured in the computational basis, then δ ∈ {0, 1} is added to the outcome (modulo 2)
to give the result r.

|0〉 H • :=;<vk(α)

|0〉 H • • :=;<vl(β)

|0〉 H • • :=;<vm(γ)

|0〉 H •
NM

 (⊕ δ)
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_ _ _ _ _ _ _ _

(c) Show that for an appropriate (adaptive) choice of α, β, γ and δ, the result r will
perfectly simulate the measurement result in the circuit

|0〉 H U(θ) H X U(φ)
NM

 .

(d) Show that when φ is an integer multiple of π
2
, it is possible to simulate the circuit

above by making all measurements on the graph state simultaneously (i.e. non-
adaptively).
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4 A qubit stored inside a quantum computer experiences decoherence. When it is
stored for a time τ , its density operator ρ evolves according to the completely positive
map Dǫ(ρ) below, where 0 < ǫ < 1

2
.

Dǫ(ρ) = (1 − ǫ)ρ+ ǫZρZ.

(a) Show that when the qubit is stored for a time nτ , where n is an integer, its evolution
is described by Dǫn(ρ), where

ǫn =
1

2
(1 − (1 − 2ǫ)n) .

(b) Find limn→∞Dǫn(ρ), and show that it corresponds to making a computational basis
measurement on the qubit and ignoring the result.

To protect against decoherence, we can use an error-correction scheme such as the one
pictured below.

ρ • • H

storage

H • H

R

H • • ρ′

|0〉 �������� H H • • H H ��������

|0〉 �������� H H • H H ��������

|0〉 �������� ��������
NM



|0〉 �������� ��������
NM



(c) Suppose that during storage a Z gate is applied to k of the 3 qubits. Give recovery
operations R dependent on the measurement results, such that ρ′ = ρ when k=0 or
1. What is ρ′ when k=2 or 3?

(d) Suppose that each qubit experiences independent decoherence Dǫ during storage.
Given that R is as specified in the previous part, find ρ′ in this case.

(e) The evolution Dǫ(ρ) can be explained by the qubit inside the quantum computer
interacting with a qubit in the environment via a controlled-Z gate. Show this by
finding a state |ψE〉 such that

trE (CZ (ρ⊗ |ψE〉 〈ψE |)CZ) = Dǫ(ρ),

where trE denotes the partial trace over the environment.

END OF PAPER
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