UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Thursday, 4 June, 2009 1:30 pm to 4:30 pm

PAPER 5

PRO-P GROUPS

Answer no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

1 Define a *topological group* and prove the following results:

(i) every open subgroup of a topological group is closed.

(ii) every open subgroup of a compact topological group is of finite index.

Define an *inverse system* and an *inverse limit* of topological spaces.

Prove that inverse limits exist and are unique.

Give two definitions of a profinite group and explain why they are equivalent. [State results from topology as required.]

2 Let G be a profinite group. Define the Frattini subgroup, $\Phi(G)$, of G. Let $X \subseteq G$. Prove that:

X generates G topologically if and only if $X\Phi(G)/\Phi(G)$ generates $G/\Phi(G)$ topologically.

Now, let G be a pro-p group. Stating clearly any results you use prove that $\Phi(G) = \overline{G^p[G,G]}$.

Let G be a pro-p group and K a subgroup of finite index in G. Prove that the index of K in G, |G:K|, is a power of p. [Hint: Suppose $|G:K| = m = p^r q$ where p and q are coprime. Let $X = \{g^m : g \in G\}$ and N be an open normal subgroup of G. Let $g \in G$ and show that $g^{p^r} \in XN$.]

Prove that if G is a finitely generated pro-p group then every subgroup of finite index in G is open. State clearly any results you use.

CAMBRIDGE

3

3 Throughout this question let p be an ODD prime.

Let G be a finite p-group and N a subgroup of G. Explain what it means to say that N is powerfully embedded in G and that G is powerful.

Prove the following:

(i) if N is powerfully embedded in G and $H = \langle x, N \rangle$ then H is powerful.

(ii) if $N = \langle X \rangle^G$ (the normal subgroup generated by X) and N is powerfully embedded in G then $N = \langle X \rangle$.

(iii) if N is powerfully embedded in G then [N, G] is also powerfully embedded in G, where [N, G] is the subgroup generated by commutators [n, x] with $n \in N$ and $x \in G$. [You may use the fact that it is sufficient to prove this under the assumption that [N, G, G, G] = 1.]

Define the *lower p-series* $G_1 \ge G_2 \ge G_3 \ge \cdots$ of G. Suppose G is a powerful p-group, prove the following:

(iv) the map $x \mapsto x^p$ induces a homomorphism from G_1/G_2 onto G_2/G_3 .

(v) $G^p = G^{\{p\}}$ where $G^{\{p\}} = \{g^p : g \in G\}$ and G^p is the subgroup generated by this set. [You may use, without proof, the result that says if N is powerfully embedded in G then so is N^p .]

Stating clearly any results you use prove the following:

(vi) a powerful 2-generator finite *p*-group is metacyclic (i.e. has a cyclic normal subgroup with cyclic quotient). [*Hint: show the derived group is cyclic.*]

4 Write an essay describing the meaning and proof of the following theorem:

The maps $G \mapsto L_G$ and $L \mapsto (L, *)$ are mutually inverse isomorphisms between the category of uniform pro-*p* groups and the category of powerful Lie algebras over \mathbb{Z}_p .

Make sure you define terms you use, such as, uniform pro-p groups, powerful Lie algebras, L_G and (L, *).

UNIVERSITY OF

4

5 Let G be a pro-p group and A a topological G-module. Explaining clearly any terms you use define the n^{th} -cohomology group $H^n(G, A)$. Prove that

$$d(G) = \dim(H^1(G, \mathbb{F}_p)),$$

where d(G) denotes the minimal number of generators needed to topologically generate G. State clearly any results you use.

Define a free pro-p group and a finite presentation of a pro-p group G.

Let G be a pro-p group and K an open normal subgroup of G. Prove that if K is finitelypresented then so is G.

END OF PAPER