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1 Define a topological group and prove the following results:

(i) every open subgroup of a topological group is closed.
(ii) every open subgroup of a compact topological group is of finite index.

Define an inverse system and an inverse limit of topological spaces.

Prove that inverse limits exist and are unique.

Give two definitions of a profinite group and explain why they are equivalent. [State results
from topology as required.]

2 Let G be a profinite group. Define the Frattini subgroup, Φ(G), of G. Let X ⊆ G.
Prove that:

X generates G topologically if and only if XΦ(G)/Φ(G) generates G/Φ(G) topologically.

Now, let G be a pro-p group. Stating clearly any results you use prove that Φ(G) =
Gp[G,G].

Let G be a pro-p group and K a subgroup of finite index in G. Prove that the index of
K in G, |G : K|, is a power of p. [Hint: Suppose |G : K| = m = prq where p and q are
coprime. Let X = {gm : g ∈ G} and N be an open normal subgroup of G. Let g ∈ G and
show that gpr ∈ XN .]

Prove that if G is a finitely generated pro-p group then every subgroup of finite index in G is
open. State clearly any results you use.
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3 Throughout this question let p be an ODD prime.

Let G be a finite p-group and N a subgroup of G. Explain what it means to say that N
is powerfully embedded in G and that G is powerful.

Prove the following:

(i) if N is powerfully embedded in G and H = 〈x,N〉 then H is powerful.

(ii) if N = 〈X〉G (the normal subgroup generated by X) and N is powerfully embedded
in G then N = 〈X〉.
(iii) if N is powerfully embedded in G then [N,G] is also powerfully embedded in G, where
[N,G] is the subgroup generated by commutators [n, x] with n ∈ N and x ∈ G. [You may
use the fact that it is sufficient to prove this under the assumption that [N,G,G,G] = 1.]

Define the lower p-series G1 > G2 > G3 > · · · of G. Suppose G is a powerful p-group,
prove the following:

(iv) the map x 7→ xp induces a homomorphism from G1/G2 onto G2/G3.

(v) Gp = G{p} where G{p} = {gp : g ∈ G} and Gp is the subgroup generated by this set.
[You may use, without proof, the result that says if N is powerfully embedded in G then
so is Np.]

Stating clearly any results you use prove the following:

(vi) a powerful 2-generator finite p-group is metacyclic (i.e. has a cyclic normal subgroup
with cyclic quotient). [Hint: show the derived group is cyclic.]

4 Write an essay describing the meaning and proof of the following theorem:

The maps G 7→ LG and L 7→ (L, ∗) are mutually inverse isomorphisms between the cate-
gory of uniform pro-p groups and the category of powerful Lie algebras over Zp.

Make sure you define terms you use, such as, uniform pro-p groups, powerful Lie algebras,
LG and (L, ∗).
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5 Let G be a pro-p group and A a topological G-module. Explaining clearly any
terms you use define the nth-cohomology group Hn(G,A). Prove that

d(G) = dim(H1(G, Fp)),

where d(G) denotes the minimal number of generators needed to topologically generate
G. State clearly any results you use.

Define a free pro-p group and a finite presentation of a pro-p group G.

Let G be a pro-p group and K an open normal subgroup of G. Prove that if K is finitely-
presented then so is G.
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