UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Tuesday, 2 June, 2009 1:30 pm to 4:30 pm

PAPER 45

SYMMETRY AND PARTICLES

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 Describe the relation between the groups SU(2) and SO(3). For SU(2) define a spinor η^{α} , $\alpha = 1, 2$, such that it transforms as

$$\eta^{\alpha} \xrightarrow{}_{A} \eta^{\prime \alpha} = A^{\alpha}{}_{\beta} \eta^{\beta} \,, \qquad A \in SU(2) \,.$$

Show how to define the conjugate spinor $\bar{\eta}_{\alpha}$ and describe how it transforms. What are the invariant tensors for SU(2)?

Describe how irreducible representations of SU(2) may be obtained by considering a representation space \mathcal{V}_n formed by totally symmetric tensors $S^{\alpha_1...\alpha_n}$. What is the dimension of \mathcal{V}_n ? Do these representations give representations for SO(3)?

For two such spaces \mathcal{V}_m and \mathcal{V}_n , with tensors $S^{\alpha_1...\alpha_m}$ and $T^{\alpha_1...\alpha_n}$, show how their product can be decomposed in terms of irreducible tensors. Demonstrate also how the product of three spinors $\eta_1^{\alpha}, \eta_2^{\beta}, \eta_3^{\gamma}$ can be decomposed in terms of irreducible tensors.

Briefly describe how this is related to the possible spin states of baryons formed from three quarks.

2 For a Lie algebra with a basis $\{T_a\}$ and commutators $[T_a, T_b] = f^c_{ab}T_c$ define the adjoint representation. Define the Killing form κ_{ab} and show that it satisfies

$$\kappa_{dc} f^d_{\ ab} + \kappa_{bd} f^d_{\ ac} = 0 \,.$$

For a field ϕ belonging to a representation space for the Lie algebra, so that there are associated matrices $\{t_a\}$ satisfying $[t_a, t_b] = f^c_{ab}t_c$, explain how the covariant derivative

$$D_{\mu}\phi = \partial_{\mu}\phi + A^{a}_{\ \mu}t_{a}\phi \,,$$

transforms under local infinitesimal gauge transformations. Define the corresponding field strength $F^a_{\mu\nu}$. How does this transform under infinitesimal gauge transformations? If

$$\mathcal{L} = -\frac{1}{4}g_{ab} F^{a\mu\nu} F^b_{\ \mu\nu} \,,$$

is a gauge invariant Lagrangian what properties must g_{ab} satisfy?

If the Lie algebra is simple explain why the Killing form provides an essentially unique solution for g_{ab} .

CAMBRIDGE

3 The Poincaré group is defined by transformations

$$x^{\mu} \to x^{\prime \mu} = \Lambda^{\mu}{}_{\nu}x^{\nu} + a^{\mu},$$

such that $g_{\mu\nu}(x_1 - x_2)^{\mu}(x_1 - x_2)^{\nu}$, with $g_{\mu\nu}$ the Minkowski metric, is invariant. Denoting the group elements by (Λ, a) determine the group multiplication rule. Show how rotations form a subgroup. Define a Lorentz boost. Why do boosts not form a subgroup in general?

Suppose $U[\Lambda, a]$ are unitary operators which give a representation of the Poincaré group when $\Lambda^0_0 \ge 1$, det $\Lambda = 1$. Show how irreducible representations are obtained in terms of states

$$|p, s s_3\rangle$$
, $g^{\mu\nu}p_{\mu}p_{\nu} = m^2$, $p_0 > 0$, $s_3 = -s, -s+1, \dots, s$,

for any $m^2 > 0$ and $s \in \{0, \frac{1}{2}, 1, \ldots\}$.

Suppose the symmetry is extended to include invariance under spatial reflections, with an associated unitary operator \mathcal{P} . How does \mathcal{P} act on the states forming the representation?

4 For the Lie algebra $\{E_{\pm}, H\}$ with commutators

$$[E_+, E_-] = H, \qquad [H, E_\pm] = \pm 2E_\pm, \qquad (*)$$

show how a basis for a finite dimensional representation space \mathcal{V}_n may be obtained starting from a state $|n\rangle$ which satisfies $E_+|n\rangle = 0$, $H|n\rangle = n|n\rangle$ where $n = 0, 1, 2, \ldots$ What is the dimension of \mathcal{V}_n ?

A basis for the Lie algebra of SU(3) is given by $\{T^i_j : i, j = 1, 2, 3; T^i_i = 0\}$ with commutation relations

$$[T^{i}_{j}, T^{k}_{l}] = \delta^{k}_{j} T^{i}_{l} - \delta^{i}_{l} T^{k}_{j}.$$

Show that $E_{1+} = T^{1}_{2}$, $E_{1-} = T^{2}_{1}$, $H_{1} = T^{1}_{1} - T^{2}_{2}$ and also $E_{2+} = T^{2}_{3}$, $E_{2-} = T^{3}_{2}$, $H_{2} = T^{2}_{2} - T^{3}_{3}$ both satisfy the commutation relations in (*).

Starting from a state $|n_1, n_2\rangle$ which satisfies $E_{i+}|n_1, n_2\rangle = 0$, $H_i|n_1, n_2\rangle = n_i|n_1, n_2\rangle$, for i = 1, 2, describe how a basis for a SU(3) representation space may be obtained for the cases $(n_1, n_2) = (1, 0), (1, 1), (3, 0)$. Plot the allowed states on a diagram with x coordinate given by the eigenvalues of H_1 , the y coordinate by the eigenvalue of $\frac{1}{\sqrt{3}}(H_1 + 2H_2)$. What are the dimensions of the spaces in each of these examples?

Describe briefly how these representation spaces are relevant in particle physics.

END OF PAPER