

MATHEMATICAL TRIPOS Part III

Thursday, 4 June, 2009 9:00 am to 12:00 pm

PAPER 40

TIME SERIES AND MONTE CARLO INFERENCE

Attempt no more than FOUR questions.

There are SIX questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

SPECIAL REQUIREMENTS

None

Cover sheet

Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Time Series

Let

$$X_t = \sum_{k=1}^p \phi_k X_{t-k} + \epsilon_t + \sum_{k=1}^q \theta_k \epsilon_{t-k}, \tag{1}$$

where ϕ_1, \ldots, ϕ_p and $\theta_1, \ldots, \theta_q$ are constants, and where $\{\epsilon_t\}$ is a white noise process with zero mean and variance σ^2 . Write down conditions for $\{X_t\}$ to be a stationary, causal, invertible ARMA(p,q) process.

For the rest of the question, assume that these conditions are satisfied and that p=1. Find the Wold representation $X_t=\sum_{j=0}^{\infty}c_j\epsilon_{t-j}$, giving explicit expressions for each $c_j,\ j\geqslant 0$, in terms of ϕ_1 and θ_1,\ldots,θ_q .

Let $\gamma_k = \text{cov}(X_t, X_{t-k})$. Show that

$$\gamma_k - \phi_1 \gamma_{k-1} = \begin{cases} 0 & \text{for } k > q \\ \sigma^2 \theta_q c_0 & \text{for } k = q \\ \sigma^2 (\theta_{q-1} c_0 + \theta_q c_1) & \text{for } k = q - 1 \\ \vdots & \vdots & \vdots \\ \sigma^2 (\theta_1 c_0 + \dots + \theta_q c_{q-1}) & \text{for } k = 1 \\ \sigma^2 (c_0 + \theta_1 c_1 + \dots + \theta_q c_q) & \text{for } k = 0. \end{cases}$$

Write down the above equations when p = q = 1, and find γ_k , $k \in \mathbb{Z}$, in this case. [Results from lectures may be used without proof.]

2 Time Series

Consider the state space model $X_t = FS_t + v_t$ and $S_t = GS_{t-1} + w_t$, where X_t and S_t are scalars that are observed and unobserved respectively, F and G are known constants, and $\{v_t\}$ and $\{w_t\}$ are uncorrelated white noise processes with variances V and W respectively. Let $\mathcal{F}_{t-1} = (X_1, \ldots, X_{t-1})$, and suppose that $S_{t-1} \mid \mathcal{F}_{t-1}$ has a normal distribution with mean \hat{S}_{t-1} and variance P_{t-1} . Show that $S_t \mid \mathcal{F}_{t-1}$ has a normal distribution with mean $G\hat{S}_{t-1}$ and variance R_t , where $R_t = G^2P_{t-1} + W$. Show that $X_t \mid S_t, \mathcal{F}_{t-1}$ is normally distributed with mean FS_t and variance V.

Using the hint below, show that the distribution of $(X_t, S_t)^T$ conditional on \mathcal{F}_{t-1} is bivariate normal with mean vector $(FG\hat{S}_{t-1}, G\hat{S}_{t-1})^T$ and covariance matrix

$$\left(\begin{array}{cc} Q_t & FR_t \\ FR_t & R_t \end{array}\right),$$

where $Q_t = F^2 R_t + V$. Deduce that the conditional distribution of S_t given X_t and \mathcal{F}_{t-1} is normal with mean \hat{S}_t and variance P_t , where

$$\hat{S}_t = G\hat{S}_{t-1} + FR_tQ_t^{-1}(X_t - FG\hat{S}_{t-1}), \quad P_t = R_t - F^2R_t^2Q_t^{-1}.$$

Consider now the above model with F=G=1. Show that the above recursions give

$$\hat{S}_t = (1 - \alpha_t)\hat{S}_{t-1} + \alpha_t X_t, \quad P_t = \alpha_t V,$$

where you should give α_t in terms of P_{t-1} , V and W. Show that if P_t tends to a constant P as t tends to infinity, then α_t converges to $(-c + \sqrt{c^2 + 4c})/2$ as t tends to infinity, where c is the signal-to-noise ratio W/V.

[Hint: Suppose that

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \end{pmatrix}. \tag{1}$$

Then you are given that

$$Y_1 \mid Y_2 \sim N(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(Y_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}).$$
 (2)

Conversely, you are given that,

if $Y_1 \mid Y_2$ satisfies (??) and $Y_2 \sim N(\mu_2, \Sigma_{22})$, then $(Y_1, Y_2)^T$ satisfies (??).

3 Monte Carlo Inference

(a) Describe the ratio of uniforms method for simulating random variables from a distribution with density $f_X(x)$, $-\infty < x < \infty$.

Prove that the resulting deviates do indeed have the density f_X .

(b) Explain why the ratio of uniforms method is usually combined with rejection sampling in most applications.

Give an algorithmic description of the combined method, requiring only uniform deviates $U \sim \text{Unif}(0,1)$, that can be applied generally. [You need not prove that the resulting method is correct.]

What is the general form of the acceptance rate of the method?

(c) Show how you would use the ratio of uniforms method to obtain samples $X \sim N(0, \sigma^2)$, and calculate the acceptance rate in this case.

4 Monte Carlo Inference

(a) Describe the estimator $\hat{\theta}$ for a quantity θ (which you should also determine) that would be obtained by the following R code

```
> theta.hat <- mean(rcauchy(n) > 2)
```

and derive an expression for $Var(\hat{\theta})$ in terms of $n \equiv n$.

(b) Now consider a function f1 for estimating the same quantity θ , given below.

```
f1 <- function(n)
{
    u <- runif(n)
    y <- 2/(1-u)
    w <- y^2/(2*pi*(1+y^2))
    return(mean(w))
}</pre>
```

Describe the estimator $\tilde{\theta}$ that would be obtained by the following call.

```
> theta.tilde <- f1(n)</pre>
```

What role does y play in the above function (f1)? Derive an expression for the variance of $\tilde{\theta}$ terms of n and θ .

(c) Finally, consider a function f2 for estimating the same quantity θ as above.

```
f2 <- function(n, beta)
{
   y <- runif(n, 0, 2)
   theta <- sum(1/(pi*(1+y^2)) - beta*(y^2 - 4/3))
   return(1/2 - (2*mean(theta)))
}</pre>
```

Comment, qualitatively, on the principles being used by this function (f2) to construct the estimator. What is the form of the estimator $\check{\theta}$ obtained in the special case when $\beta=0$ by the following call?

```
> theta.check <- f2(n, 0)
```

Can you suggest how β might be optimally chosen?

Part III, Paper 40

5 Monte Carlo Inference

- (a) Describe the Metropolis Hastings (MH) algorithm and the Gibbs sampler, for obtaining a dependent sample from some distribution $\pi(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^k$, and prove that the Gibbs sampler is a special case of the MH algorithm.
- (b) Now take the partially standardised bivariate normal distribution

$$\pi_{\sigma,\rho}(x,y) = \frac{1}{2\pi\sigma\sqrt{1-\rho^2}} \exp\left\{-\frac{x^2 + y^2 - 2\rho xy}{2\sigma^2(1-\rho^2)}\right\}$$

for
$$\rho \in (-1,1)$$
, $(x,y) \in \mathbb{R}^2$, $\sigma^2 > 0$.

Find the full conditional distributions $\pi_{1,\rho}(x|y)$ and $\pi_{1,\rho}(y|x)$ and thereby illustrate how the Gibbs sampler can be used to obtain a dependent sample from $\pi_{1,\rho}(x,y)$, i.e., when $\sigma = 1$ in the expression above.

- (c) Suppose that today is just not your day. Your analytical skills have failed you, and you cannot derive the full conditional distributions $\pi_{1,\rho}(x|y)$ and $\pi_{1,\rho}(y|x)$. Show how you can still obtain a dependent sample from $\pi_{1,\rho}(x,y)$ by taking proposals $(x',y') \sim \pi_{\sigma_q,0}(x,y)$, i.e., from a bivariate normal centred at (x,y) with covariance matrix $\sigma_q^2 \mathbf{I}_2$, by applying the MH algorithm. Give an expression for the acceptance probability $\alpha((x,y),(x',y'))$ and thereby detail how the Markov chain transitions from one state to the next.
- (d) Sketch a method for optimising the MH algorithm by tuning the proposal variance σ_q^2 . Why is optimising $\alpha((x,y),(x',y'))$ not sensible?

6 Monte Carlo Inference

- (a) Let \mathbf{x} represent observed data, and \mathbf{z} denote missing data, with joint distribution $f(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})$. Describe the iterative Expectation Maximisation (EM) algorithm for finding the $\hat{\boldsymbol{\theta}}$ that maximises the observed data likelihood $L(\mathbf{x}|\boldsymbol{\theta})$. In particular, state explicitly how the value of $\boldsymbol{\theta}^{(t+1)}$ obtained in iteration t+1 is derived from the value of $\boldsymbol{\theta}^{(t)}$ obtained in iteration t.
- (b) Prove that every step of the EM algorithm increases the log likelihood. That is,

$$\log L(\mathbf{x}|\boldsymbol{\theta}^{(t+1)}) \geqslant \log L(\mathbf{x}|\boldsymbol{\theta}^{(t)}).$$

- (c) Comment on the implications of the result in part (b) in the context of searching for a maximum likelihood estimator.
- (d) Briefly compare EM with the method of Data Augmentation.

END OF PAPER