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1 Let G be a finite group. Suppose that H is a Frobenius complement in G. Let

N =

G \
⋃
g∈G

Hg

 ∪ {1}.

(i) Suppose θ is a class function on H and θ(1) = 0. Show that (θG)H = θ.

(ii) Prove that N is a normal subgroup of G and that NH = G. (You may assume that
|N | = |G : H|.)

(iii) Let χ be an irreducible character of G. Suppose N ⊆ ker χ and 〈χH , 1H〉 > 0. Prove
that χ = 1G.

(iv) Let h ∈ H\{1} and x ∈ N . Prove that there exists y ∈ N such that [h, y] = x, where
[h, y] = h−1y−1hy. (Hint. An injective map of a finite set to itself is surjective.)

(v) Suppose N is abelian. Using (iv) or otherwise, show that, for every non-trivial
φ ∈ Irr(N), the inertia group IG(φ) is equal to N .

2 Let N be a normal subgroup of a finite group G. Suppose θ ∈ Irr(N), and let
T = IG(θ) be the inertia group. Prove that

(a) if ξ ∈ Irr(T |θ) then ξG ∈ Irr(G|θ);

(b) the map ξ 7→ ξG is a bijection of Irr(T |θ) onto Irr(G|θ).

A group K is called metabelian if it has an abelian normal subgroup L such that
K/L is abelian. Prove that every metabelian finite group is an M-group.
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3 Throughout the question, λ and µ denote partitions of a fixed integer n. Explain
what it means to say that λ dominates µ (that is, λ D µ).

Let Xλ be the set of all λ-tabloids and consider the corresponding permutation
CSn-module CXλ. If t is a λ-tableau, let

κt =
∑
g∈Ct

sgn(g)g,

where Ct is the column stabiliser of t. Set et = κt[t] ∈ Mλ.

Explain briefly why get = egt for all g ∈ Sn. Give a definition of the Specht module
Sλ.

In what follows, you may use results on the value of κt[s] — where t is a λ-tableau
and s is a µ-tableau — without proof, provided you state them clearly. You may also
assume that the inner product on Mλ given by

〈[t], [s]〉 =

{
1 if [t] = [s],
0 otherwise

satisfies 〈κtu, v〉 = 〈u, κtv〉 whenever u, v ∈ Mλ and t is a λ-tableau. The orthogonal
complement below is taken with respect to this inner product.

(i) Let U be a submodule of Mλ. Prove that either U ⊇ Sλ or U ⊆ (Sλ)⊥. Deduce
that Sλ is simple.

(ii) Show that if HomCSn(Sλ,Mµ) 6= 0 then λ D µ. Also show that dim HomCSn(Sλ,Mλ) =
1.

(iii) For all λ and µ, denote by χλ the character of Sn afforded by Sλ, and by ξµ the
character afforded by Mµ. Prove that

ξµ =
∑
λDµ

〈ξµ, χλ〉χλ

and that 〈ξµ, χµ〉 = 1.

(iv) Hence, or otherwise, prove that χλ(g) ∈ Z for all g ∈ Sn and all partitions λ of n.

(v) Suppose n ≡ 3 mod 4. Show that there exist an irreducible character θ of the
alternating group An and an element g ∈ An such that θ(g) /∈ R.
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4 Give definitions of a p-elementary group and an elementary group. State Brauer’s
characterisation of characters.

Let N be a normal subgroup of a finite group G. Suppose θ ∈ Irr(N) is G-invariant
and θ(1) is coprime to |G : N |. Assume that det θ can be extended to a character µ of G.
Prove that there exists a generalised character χ of G such that χN = θ. (You may use
the following result: if, in addition to the hypotheses above, G/N is solvable, then there
exists a unique χ ∈ Irr(G) such that χN = θ and detχ = µ.)

Let π be a set of prime numbers, and let π′ be the set of those primes that do not lie
in π. Show that every elementary group is a direct product of a π-group and a π′-group.

Let K be a finite group. Consider the sets

A = {g ∈ K : g is a π-element and g 6= 1} and
B = {g ∈ K : g is a π′-element and g 6= 1}.

Assume K = A∪B∪{1}. Prove that there exists a generalised character ξ of K such that
ξ(a) = 1 for all a ∈ A and ξ(b) = 0 for all b ∈ B.

END OF PAPER
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