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1 Let Y be a positive random variable with all moments finite and with moment
generating function MY (t) = E(eY t). The cumulant generating function is defined to
be κY (t) = loge(MY (t)) and the jth cumulant of Y is κY,j = κ

(j)
Y (0). Show that κY,1

and κY,2 are the mean and variance of Y , and that κY,3 is the skewness of Y , given by
E

(
(Y − E(Y ))3

)
.

Let N be the number of claims arriving at an insurance company in a year.
The claims X1,X2, . . . are independent identically distributed positive random variables,
independent of N . Let S be the total amount claimed during the year. Show that the
cumulant generating function of S is κS(t) = κN (κX1(t)), where κN and κX1 are the
cumulant generating functions of N and X1 respectively.

For each of the following distributions for N , find the cumulant generating function
and skewness of S, in each case expressing the skewness explicitly in terms of the moments
of X1 and the parameters of the distribution of N .

(a) N has a Poisson distribution with mean λ;

(b) N has a geometric distribution where P(N = n) = (1 − p)np, n = 0, 1, 2, . . .
(0 < p < 1);

(c) N has a binomial distribution with mean np and variance np(1− p) (0 < p < 1).

In cases (a) and (b), show that S must have positive skewness. In case (c), by
considering claims that are equal to a positive constant with probability one, give an
example where S has negative skewness.
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2 Let N be the number of claims arriving at a direct insurer in one accounting period.
The sizes of the claims, X1,X2, . . ., are independent identically distributed (iid) positive
random variables, independent of N , with density fX1 and distribution function FX1 . The
direct insurer takes out an excess of loss reinsurance contract with fixed retention level
M > 0. Assume that 0 < P(X1 > M) < 1. Write down the amounts Yi and Zi paid out
by the direct insurer and the reinsurer respectively on a single claim Xi.

Let NR be the number of non-zero Zi’s in one accounting period. By writing NR

as
∑N

i=1 Ii for some iid random variables I1, I2, . . ., show that the probability generating
function of NR is given by GNR

(z) = GN (αz + 1 − α), where GN (z) = E(zN ) and α is
some number between 0 and 1 which you should specify in terms of M and FX1 .

The total amount SR paid out by the reinsurer in one accounting period can be
written SR =

∑NR
j=1 Wj, where the Wj ’s are iid positive random variables independent of

NR. Find the distribution function of W1 in terms of M and FX1 . Write down the density
of W1.

Now assume that P(N = k) = (1−p)kp, k = 0, 1, 2, . . ., for 0 < p < 1, and that X1 is
exponentially distributed with mean µ > 0. Find the distributions of W1 and NR. Hence
identify the distribution of SR, and, for s > 0, find the probability that the reinsurer’s total
payment in one accounting period exceeds s.

3 In a classical risk model, claims arrive in a Poisson process with rate λ > 0, the
claim sizes have density f(x) and mean µ, and the premium income rate is c = (1 + θ)λµ,
where θ > 0. Define the surplus process U(t) and the probability of ruin ψ(u) with initial
capital u > 0.

Let φ(u) = 1− ψ(u). Show that

φ′(u) =
φ(u)

(1 + θ)µ
− 1

(1 + θ)µ

∫ u

0
φ(u− x)f(x)dx.

Now suppose that f(x) = 4xe−2x, x > 0, and θ = 2. Show that

3φ′(u) = φ(u)− 4e−2uI(u),

where I(u) =
∫ u
0 (u− t)φ(t)e2tdt.

Show that

3φ′′(u) = −5φ′(u) + 2φ(u)− 4e−2u

∫ u

0
φ(t)e2tdt,

and hence show that
3φ′′′(u) + 11φ′′(u) + 8φ′(u) = 0.

Given that φ(0) = θ/(1 + θ) and that φ(u)→ 1 as u→∞, find φ(u) and hence find ψ(u).
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4 A fleet of company cars is insured each year, and in year j the fleet has mj cars (mj

known). Let Xj be the amount claimed per car in year j, j = 1, . . . , n, where, conditional
on a risk parameter θ, the Xj ’s are independent with common mean E(X1 | θ) = µ(θ),
and variances var(Xj | θ) = σ2(θ)/mj. The credibility premium per car for year n + 1 is
defined to be a0 +

∑n
j=1 ajXj where the aj’s are chosen to minimise

E
[(

µ(θ) − a0 −
n∑

j=1

ajXj

)2
]
.

Find the credibility premium per car in year n + 1. Show that it is of the form

Z

∑n
j=1 mjXj∑n

j=1 mj
+ (1 − Z)E [µ(θ)] ,

and give an expression for Z.

Suppose that in an approximate model, the conditional distribution of Xj given θ is
normal with mean θ and variance v/mj , and suppose also that θ is normally distributed
with mean µ and variance a. In this approximate model, find the credibility premium per
car for year n + 1.

Derive the Bayesian estimate of µ(θ) under quadratic loss in the approximate model,
and compare it with the credibility estimate above.
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