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1 Suppose we observe x positive responses out of m Bernoulli trials, each assumed
conditionally independent given an unknown, common success chance θ. Our prior
distribution for θ is Beta(a,b), with density p(θ|a, b) = Γ(a+b)

Γ(a)Γ(b) θa−1 (1− θ)b−1; θ ∈ (0, 1).

(a) Derive the posterior distribution for θ given x.

(b) Show that the Jeffreys prior for θ is Beta(0.5,0.5). State the invariance property of
Jeffreys prior distributions.

(c) We plan to observe a further n Bernoulli trials. If a and b above are positive integers,
show that the predictive distribution for the future number of successes Y can be
written as

p(y|n, x,m, a, b) = A×B,

where

A =
m + a + b− 1

m + n + a + b− 1
and B =

(
y + x + a− 1

y

)(
m + n− y − x + b− 1

n− y

)
(

m + n + a + b− 2
n

) .

(d) Another form of invariance property is as follows. Suppose we observe x out of m
successes, and calculate the probability of observing y successes out of a further
m trials. Compare this with the situation in which we had observed y out of m
successes, and calculated the probability of x successes out of a further m trials.
Then we should require that these two probabilities are the same. Show that this
is true if a = b = 1.

(e) What other attractive predictive property does a Beta(1,1) prior have, as identified
by Bayes?

(f) Can you interpret the form of B in p(y|n, x,m, a, b) when a = b = 1?
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2 Suppose you enter a town of unknown size whose trams are numbered consecutively
from 1 to N . The first tram you see, assumed to be equally likely to be any of the trams,
has number y = 100. We want to make inference on N .

(a) Show that the likelihood function for N is ∝ 1/N ; N > y.

(b) What is the maximum likelihood estimate of N?

(c) Suppose we assumed an improper discrete uniform prior distribution on the positive
integers. What would be the posterior distribution for N given y? Why would this
prior not be appropriate?

(d) Suppose we assumed a proper discrete uniform prior distribution on the integers 1
to M , where M > y. Find an exact expression for the posterior mean of N .

(e) Assume again a proper discrete uniform prior distribution on the integers 1 to M ,
where M > y. Making suitable approximations of sums by integrals, or otherwise,
show that as M increases, E[N |y] × log(M)/M → 1. Why would this lead us to
expect our inferences on N to be very sensitive to the choice of M?

(f) Jeffreys suggested an improper prior p(N) ∝ 1/N . Making suitable approximations
of sums by integrals, or otherwise, show that P (N 6 n|y) ≈ 1 − y/n, and hence
that the posterior median is approximately 2y.

(g) The following shows WinBUGS code for a version of Jeffreys’s prior when the
assumed maximum number of trams is 5000. Provide brief comments, focusing on
the numbered lines of code, on what the code represents and why this will provide
the desired analysis.

y <- 100
###################################
for(j in 1:5000){
reciprocal[j] <- 1/j
p.jeffreys[ j]<-reciprocal[j] / sum.recip # (1)
}
sum.recip <- sum(reciprocal[])
N ~ dcat(p.jeffreys[]) # (2)

y ~dcat(p[])
for(j in 1:5000){
p[j] <- step( N - j + 0.01) / N # (3)

}

(h) When y = 100 we obtain the following results using Jeffreys’s prior:

node mean sd MC error 2.5% median 97.5% start sample
N 408.7 600.4 4.99 102.0 197.0 2372.0 1001 10000

Why might the median be a better summary of the posterior than the mean?
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3 Some classic mutagenicity assay data on salmonella features three plates that have
been processed at each of six doses of quinoline, (recorded as µg per plate). The numbers
of revertant colonies of TA98 Salmonella on each plate are shown below.

Dose level i 1 2 3 4 5 6
Dose xi 0 10 33 100 333 1000
Plate 1 15 16 16 27 33 20
Plate 2 21 18 26 41 38 27
Plate 3 29 21 33 60 41 42

A certain dose-response curve is suggested by theory, so that for an observation Yij

on the jth plate at the ith dose, we assume a Poisson model allowing for ‘over-dispersion’:

Yij ∼ Poisson(µij) independently, given the µij’s
log µij = α + β log(xi + 10) + γxi + λij

λij ∼ Normal(0, τ2) independently.

(a) Just from examining the data by eye, why do you think an allowance for over-
dispersion may be needed?

(b) In what way does this model allow for over-dispersion?

The model is fitted using the following WinBUGS code:

for(i in 1:doses) {
for(j in 1:plates) {
y[i,j] ~ dpois(mu[i,j])
log(mu[i,j]) <- alpha + beta*log(x[i]+10) + gamma*x[i] + lambda[i,j]
lambda[i,j] ~ dnorm(0.0, invtau2)
}

}
alpha ~ dunif(-100,100)
beta ~ dunif(-100,100)
gamma ~ dunif(-100,100)
tau~ dunif(0,100)
invtau2<-1/(tau*tau)

(c) How could the convergence be improved?

(d) Explain briefly the prior distributions given to the parameters, in particular why
the standard Jeffreys prior is not given to variance parameter τ2.

(e) How would you adapt the code if you wanted to fit a model with no overdispersion?

(f) The following table shows the DIC output based on 10000 iterations when fitting
models with and without over-dispersion.

Dbar = post.mean of -2logL;
Dbar pD DIC

Model without over-dispersion 139.2 2.9 142.1
Model with over-dispersion 110.6 13.6 124.2

Part III, Paper 36



5

Interpret these results, in particular the pD column.

(g) How would you calculate standardised residuals around the fitted values for each
plate? What would you be looking for and what would this procedure be checking?

(h) Suppose you wanted to check the underlying dose-response assumption by seeing if
the predictions it would make matched the observed data. What replications might
you make and how would you compare them with the observed data?

4

(a) Suppose we have two alternative models M1 and M2 with parameter vectors ψ1 and
ψ2 respectively, and we are provided with prior distributions p(ψi|Mi), sampling
distributions pY (y|ψi,Mi) for i=1,2, and a prior probability p(M1) = 1 − p(M2).
For an observation y, how would we find the posterior odds on model M1?

In a (simplified version of a) micro-array experiment, we will make observations
Y1, ..., YN which summarise the expression of N genes, where N is very large. Each
Yi is a standardised Normal variable with mean θi and variance 1, where θi is the
true expression of gene i. If a gene i is ‘negative’, then θi = 0. If gene i is ‘positive’,
then θi is assumed to be a Normal variable with mean 0 and variance V , where V
is assumed known. The proportion of ‘positive’ genes is denoted q, for the moment
assumed known. We now observe a vector y = (y1, ..., yN ).

(b) For a positive gene, state the posterior mean of θi given yi.

(c) Write down the predictive distribution for Yi|V for a positive gene i. Hence derive
an expression for the posterior odds in favour of a gene being positive, as a function
of yi, V and q.

(d) Suppose now that q is unknown. Write down an expression for p(y|q, V ). Explain
briefly how you might go about finding a maximum likelihood estimate for q?

(e) Suppose you have external information that q is around 10%, and is unlikely to be
above 15%. In words, how might you tranform this information into a formal prior
distribution?

(f) By introducing an indicator function or otherwise, provide rough WinBUGS code
that will provide full posterior distributions for q and the θi’s.

(g) Suppose you are not told the actual values comprising y, but only that 15% of the
genes had an observed expression greater than 2. How might you estimate q?
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