

MATHEMATICAL TRIPOS Part III

Monday, 1 June, 2009 1:30 pm to 3:30 pm

PAPER 34

STATISTICAL THEORY

Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

 $SPECIAL\ REQUIREMENTS$

None

 $Cover\ sheet$ Treasury Tag

Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Let A be a symmetric $n \times n$ matrix of rank n-p, and let B be a $p \times n$ matrix of rank p. Suppose that BA = 0. You are given that we can write $A = LL^T$, where L is an $n \times (n-p)$ matrix of rank n-p. Show that L^TL is positive definite, and by considering $BLL^TL(L^TL)^{-1}$, show that BL = 0.

Let $Y \sim N_n(\mu, \sigma^2 I)$. Find the distribution of the random vector $Z = \begin{pmatrix} BY \\ L^TY \end{pmatrix}$, and deduce that BY and Y^TAY are independent.

(b) Consider the linear model $Y = X\beta + \epsilon$, where X is an $n \times p$ design matrix of full rank $p \ (< n)$, $\beta \in \mathbb{R}^p$ is an unknown vector of regression coefficients and $\epsilon \sim N_n(0, \sigma^2 I)$. Write down expressions for the maximum likelihood estimators $\hat{\beta}$ and $\hat{\sigma}^2$, and also write down their marginal distributions.

Using the result of part (a), or otherwise, show carefully that $\hat{\beta}$ and $\hat{\sigma}^2$ are independent.

For $n=1,2,\ldots$, let $Y=(Y_1,\ldots,Y_n)^T$ have independent and identically distributed components with density $f(\cdot;\theta)$ for some $\theta\in\Theta\subseteq\mathbb{R}^d$ on a sample space \mathcal{Y} . Let θ_0 denote the true value of θ . Assume Θ is closed and bounded and that for each $y\in\mathcal{Y}$, the likelihood $L(\theta;y)$ is a continuous function of θ . Suppose that, for each n, the maximum likelihood estimator $\hat{\theta}_n$ based on Y_1,\ldots,Y_n is unique, the model is identifiable and $\mathbb{E}_{\theta_0}\{\sup_{\theta\in\Theta}|\log f(Y_1;\theta)|\}<\infty$.

Prove that $\hat{\theta}_n$ is consistent; i.e. $\hat{\theta}_n \stackrel{p}{\to} \theta_0$ as $n \to \infty$.

[You may use the fact that $\mathbb{E}_{\theta_0}\{\log f(Y_1;\theta)\}$ is a continuous function of θ and

$$\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^{n} \log f(Y_i; \theta) - \mathbb{E}_{\theta_0} \{ \log f(Y_1; \theta) \} \right| \stackrel{p}{\to} 0$$

as $n \to \infty$].

Under regularity conditions that you need *not* specify, state a result about the asymptotic normality of $\hat{\theta}_n$.

Now let Y_1, \ldots, Y_n be independent $U[0, \theta]$ random variables. Find $\hat{\theta}_n$ and prove from first principles that $\hat{\theta}_n$ is consistent. By considering the distribution function of $n(\theta - \hat{\theta}_n)/\theta$, show that $\hat{\theta}_n = \theta + o_p(n^{-1/2})$ as $n \to \infty$. Give one regularity condition for your asymptotic normality result that is violated in this case.

3 Let $X = (X_1, ..., X_p)^T$ denote a random vector distributed as $N_p(\theta, I)$, where $p \ge 4$. Consider estimating θ with

$$\hat{\theta} = \bar{X}1_p + \left(1 - \frac{p - 3}{\|X - \bar{X}1_p\|^2}\right)(X - \bar{X}1_p),$$

where $\bar{X} = p^{-1} \sum_{j=1}^{p} X_j$, where $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^p and where 1_p is a p-vector of ones. Describe very briefly the action of $\hat{\theta}$ on each component X_j .

Write down the distribution of \bar{X} in terms of $\bar{\theta} = p^{-1} \sum_{j=1}^{p} \theta_j$, and show that if $R(\hat{\theta}, \theta) = \mathbb{E}_{\theta}(\|\hat{\theta} - \theta\|^2)$ denotes the risk function, then

$$R(\hat{\theta}, \theta) = 1 + \mathbb{E}_{\theta} \left\{ \left\| \left(1 - \frac{p - 3}{\|X - \bar{X}1_p\|^2} \right) (X - \bar{X}1_p) - (\theta - \bar{\theta}1_p) \right\|^2 \right\}.$$

Show further that

$$R(\hat{\theta}, \theta) = p - (p - 3)^2 \mathbb{E}_{\theta} \left(\frac{1}{\|X - \bar{X} \mathbf{1}_p\|^2} \right).$$

Using the fact that $||X - \bar{X}1_p||^2$ has a non-central chi-squared distribution with p-1 degrees of freedom and non-centrality parameter $||\theta - \bar{\theta}1_p||^2$, describe the set on which the risk function attains its minimum, and find the value of the risk function on this set.

4 Describe in detail the Least Angle Regression (LARS) algorithm for a linear model with n observations and p linearly independent covariates, where n > p.

[You may assume, without derivation, that at the kth iteration, the LARS algorithm moves to $\hat{\boldsymbol{\mu}}^k = \hat{\boldsymbol{\mu}}^{k-1} + \hat{\gamma}^k \mathbf{u}^k$, where

$$\hat{\gamma}^k = \min_{j \in (\mathcal{A}^k)^c} + \left(\frac{C^k - c_j^k}{\alpha^k - a_j^k}, \frac{C^k + c_j^k}{\alpha^k + a_j^k}\right),$$

but your answer should define all the terms in these formulae.]

Define the LASSO estimator $\hat{\boldsymbol{\beta}}_{\lambda}^{LASSO}$ with penalty parameter λ . Describe the modification to the LARS algorithm that yields all LASSO solutions $\{\hat{\boldsymbol{\beta}}_{\lambda}^{LASSO}: \lambda>0\}$.

[Hint: Write $\tilde{\gamma}^k$ for the smallest step in the positive γ -direction along the LARS line $\mu(\gamma) = \hat{\mu}^{k-1} + \gamma \mathbf{u}^k$ for which some active index j_k satisfies $\beta_{j_k}(\tilde{\gamma}^k) = 0$, where $\boldsymbol{\beta}(\gamma) = (\beta_1(\gamma), \dots, \beta_p(\gamma))^T$ satisfies $\boldsymbol{\mu}(\gamma) = X\boldsymbol{\beta}(\gamma)$.]

END OF PAPER