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1 Suppose X1, ...,Xn are independent and identically distributed random variables
with cumulative distribution function F : R → R. Define the empirical distribution
function Fn of the sample.

Given two (measurable) real-valued functions l, u on R, a bracket is the set of
functions [l, u] := {f : R → R : l(x) 6 f(x) 6 u(x) for all x ∈ R}. Suppose H is a class
of measurable functions from R to R such that, for every ε > 0, there exist N(ε) < ∞
brackets [li, ui]

N(ε)
i=1 that satisfy the following conditions: i) for every i, E|li(X)| < ∞,

E|ui(X)| < ∞, E|ui(X)− li(X)| < ε, and ii) for every h ∈ H there exists i with h ∈ [li, ui].
Prove the uniform law of large numbers

sup
h∈H

∣∣∣∣∣ 1n
n∑

i=1

(h(Xi)− Eh(X))

∣∣∣∣∣ → 0 almost surely

as n →∞.

Deduce from the above result that

sup
t∈R

|Fn(t)− F (t)| → 0 almost surely

as n →∞.

Furthermore, give an example of a class H of continuous functions h : R → R with
uncountably many elements for which the uniform law of large numbers holds. [You may
use results from functional analysis, such as the Ascoli-Arzela theorem, in the justification.]

2 Given an independent and identically distributed sample X1, ...,Xn from the
probability density function f : R → R, define, for x ∈ R, the kernel density estimator
fK

n (x, h) with bandwidth h > 0 and kernel K. Discuss briefly a motivation for this
estimator.

Suppose that f is differentiable on R with bounded derivative and that h = hn

satisfies nh3
n → 0 as n → ∞. Assume that the kernel K : R → R is a nonnegative,

bounded and compactly supported function. Prove that, for every x ∈ R,√
nhn(fK

n (x, hn)− f(x)) →d N(0, f(x)‖K‖22)

as n → ∞, where ‖K‖22 =
∫

R K2(x)dx. [You may assume the Lindeberg-Feller central
limit theorem, provided it is carefully stated.]

Suppose you are given the quantiles of the N(0, f(x)‖K‖22) distribution. Describe
how to construct a confidence interval for f(x) of asymptotic coverage 1−α, based on the
above limit theorem.
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3 What is the wavelet series of a square-integrable function f : R → R? How can it
be used to approximate the function?

Considering the Haar wavelet, denote by Kj(f) the projection (with respect to the
inner product < f, g >=

∫
R f(x)g(x)dx) of a locally integrable function f : R → R onto

the space Vj of functions that are piecewise constant on the intervals (k/2j , (k + 1)/2j ],
k ∈ Z. Prove that, if f : R → R is bounded and differentiable with a bounded derivative,
then there exists a constant c independent of j and x such that |Kj(f)(x)− f(x)| 6 c2−j

for every x ∈ R.

Suppose you are given a sample of independent and identically distributed random
variables X1, ...,Xn with common probability density function f : R → R, where f is
differentiable with bounded derivative. How can you use wavelets to estimate f? Show
that one can construct a density estimator fW

n (x) based on Haar wavelets such that the
pointwise risk satisfies E|fW

n (x)− f(x)| = O(n−1/3).

4 Suppose you are given n independent and identically distributed copies of the
random vector (X,Y ) with joint probability density function f(x, y), marginal density for
X given by fX and suppose m(x) = E(Y |X = x). Define, for x ∈ R, the Nadaraya-Watson
estimator m̂n(h, x) based on the kernel K and bandwidth h.

Again, let x ∈ R and suppose m(x) is bounded and twice continuously differentiable
at x, that the conditional variance function V (x) = Var(Y |X = x) is bounded on R and
continuous at x, and that fX is bounded, continuous on R, continuously differentiable at
x, and satisfies fX(x) > 0. Suppose further that the kernel is K(x) = 1[−1/2,1/2](x). If
h = hn ≃ n−1/5, prove that

E|m̂n(hn, x)−m(x)| = O(n−2/5)

as n →∞. [You may use in the proof the auxiliary result that

E(|m̂n(hn, x)−m(x)|1{f̂X
n (x) 6 δ}) = o(n−2/5)

for some δ > 0, where f̂X
n (x) = (nhn)−1

∑n
i=1 K((x−Xi)/hn). You may use further that

the ordinary kernel density estimator satisfies E(fX(x) − f̂X
n (x))2 = o(1) as n → ∞.]
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