UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Thursday, 28 May, 2009 1:30 pm to 4:30 pm

PAPER 3

COMMUTATIVE ALGEBRA

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 Define the set Spec(A) for a ring A, and the Zariski topology on Spec(A). Show that the Zariski topology is in fact a topology.

 $\mathbf{2}$

State Zorn's Lemma, and use it to show that $\text{Spec}(A) \neq \emptyset$ whenever $A \neq 0$.

Show that Spec(A) defines a contravariant functor from the category of rings and ring homomorphisms to the category of topological spaces and continuous maps.

Describe the image of the natural inclusion $\mathbb{R}[x] \to \mathbb{C}[x]$ under the functor Spec.

2 Let A be a ring and S a multiplicatively closed subset of A. Define the localisation A_S of A at S, and prove that it is a ring.

Write down the universal property that characterises A_S and show that it does satisfy this property.

What does it mean to localise A at a prime ideal?

If each localisation of A at a prime ideal has no non-zero nilpotent elements, can A have non-zero nilpotent elements? If each localisation of A at a prime ideal is an integral domain, must A be an integral domain? In each case justify your answer.

3 Let *A* be a ring. What does it mean to say that an *A*-module is *Noetherian*? What does it mean to say that *A* is a *Noetherian ring*?

Define A[[x]] the ring of formal power series with coefficients in A. Show that A is a Noetherian ring if and only if A[[x]] is a Noetherian ring.

Suppose that M is a Noetherian A-module and $f: M \to M$ is a surjective A-module map. Show that f is an isomorphism.

4 Define the *Picard group* of a ring. Prove that it is an abelian group.

Show that if $f: A \to B$ is a ring homomorphism and L is a line bundle over A then $B \otimes_A L$ is a line bundle over B. Use this to show that Pic defines a functor from the category of rings and ring homomorphisms to the category of abelian groups and group homomorphisms.

What is the Picard group of $\mathbb{C}[x]$? Justify your answer.

UNIVERSITY OF

3

5 Suppose A and B are rings. Discuss the construction and properties of the left derived functors L_iF of a right exact functor

$$F \colon A \operatorname{-mod} \to B \operatorname{-mod}$$
.

Illustrate your discussion with the base change functor $M \mapsto B \otimes_A M$ in the case that B = A/Aa for $a \in A$ not a zero divisor.

6 Let A be a Noetherian ring and M a finitely generated A-module. Show that M has a projective resolution consisting of finitely generated projective A-modules.

Deduce if a module M has projective dimension n then $\operatorname{Ext}_{A}^{n}(M, A)$ is non-zero.

Find a ring A and an A-module M such that M does not have finite projective dimension as an A-module. Jusify your answer.

END OF PAPER