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1 Define the set Spec(A) for a ring A, and the Zariski topology on Spec(A). Show
that the Zariski topology is in fact a topology.

State Zorn’s Lemma, and use it to show that Spec(A) 6= ∅ whenever A 6= 0.

Show that Spec(A) defines a contravariant functor from the category of rings and
ring homomorphisms to the category of topological spaces and continuous maps.

Describe the image of the natural inclusion R[x] → C[x] under the functor Spec.

2 Let A be a ring and S a multiplicatively closed subset of A. Define the localisation
AS of A at S, and prove that it is a ring.

Write down the universal property that characterises AS and show that it does
satisfy this property.

What does it mean to localise A at a prime ideal?

If each localisation of A at a prime ideal has no non-zero nilpotent elements, can A
have non-zero nilpotent elements? If each localisation of A at a prime ideal is an integral
domain, must A be an integral domain? In each case justify your answer.

3 Let A be a ring. What does it mean to say that an A-module is Noetherian? What
does it mean to say that A is a Noetherian ring?

Define A[[x]] the ring of formal power series with coefficients in A. Show that A is
a Noetherian ring if and only if A[[x]] is a Noetherian ring.

Suppose that M is a Noetherian A-module and f : M →M is a surjective A-module
map. Show that f is an isomorphism.

4 Define the Picard group of a ring. Prove that it is an abelian group.

Show that if f : A→ B is a ring homomorphism and L is a line bundle over A then
B ⊗A L is a line bundle over B. Use this to show that Pic defines a functor from the
category of rings and ring homomorphisms to the category of abelian groups and group
homomophisms.

What is the Picard group of C[x]? Justify your answer.
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5 Suppose A and B are rings. Discuss the construction and properties of the left
derived functors LiF of a right exact functor

F : A−mod→ B−mod.

Illustrate your discussion with the base change functor M 7→ B ⊗A M in the case that
B = A/Aa for a ∈ A not a zero divisor.

6 Let A be a Noetherian ring and M a finitely generated A-module. Show that M
has a projective resolution consisting of finitely generated projective A-modules.

Deduce if a module M has projective dimension n then ExtnA(M,A) is non-zero.

Find a ring A and an A-module M such that M does not have finite projective
dimension as an A-module. Jusify your answer.
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