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1 (a) Let (Ω,F , (Ft)t>0, P) be a filtered probability space. Define the previsible σ-
algebra P and explain what is meant by a simple process. (We let S be the space of
simple processes). Give the definition of the stochastic integral H ·M of a simple process
(Hs, s > 0) with respect to a continuous martingale M which is bounded in L2. (We
let M2

c be the space of continuous martingales bounded in L2). Give the definition of
the quadratic variation [M ] of a continuous local martingale M and explain how you can
compute it from the path (Mt, t > 0) using an approximation procedure. [You are not
required to prove the existence of the quadratic variation or to justify your approximation
procedure.]

(b) Let H ∈ S and M ∈M2
c . Show that H ·M ∈M2

c and that

E
(
(H ·M)2∞

)
6 ‖H‖2

∞E((M∞ −M0)2).

(c) Show that for H ∈ S and M ∈M2
c , we have in fact the equality

E
(
(H ·M)2∞

)
= E

(∫ ∞
0

H2
s d[M ]s

)
.

Deduce that [H · M ] = H2 · [M ]. [Hint:You may use the Optional Stopping Theorem
provided that you state it clearly.]
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2 Let M be a continuous local martingale and let A be a finite variation process such
that for some nonrandom constant K < ∞ we have:

sup
s>0

(|Ms|+ Vs) 6 K (1)

where Vs denote the total variation of A at time s. Let Xt = Mt + At, and assume that
M0 = A0 = 0.

(a) Let φ be a nondecreasing function of class C1 such that φ(x) = −1 for x 6 0
and φ(x) = 1 for x > 1. For all n > 1, define a function fn such that fn(0) = 0 and for
all x ∈ R, f ′

n(x) = φ(nx). Show that fn(Xt) is a continuous semimartingale and give its
Doob-Meyer decomposition. Show that as n →∞,∫ t

0
f ′

n(Xs)dMs −→
∫ t

0
sgn(Xs)dMs

in the u.c.p. sense (uniformly on compacts in probability), where sgn(x) = 1{x>0}−1{x60}
is the (left-continuous) function which gives the sign of x. [Hint : Apply Itô’s isometry
property to the difference of those two integrals.]

(b) Show that as n →∞,∫ t

0
f ′

n(Xs)dAs −→
∫ t

0
sgn(Xs)dAs

almost surely for all t > 0 simultaneously.

(c) Deduce from (a) and (b) that if Zt = |Xt| −
∫ t
0 sgn(Xs)dXs, then Z is a nonde-

creasing process almost surely. Conclude that |X| is a continuous semimartingale. Show
that the result remains true if we no longer assume (??), i.e., if X is any continuous semi-
martingale starting at 0.
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3 (a) State the Dubins-Schwartz theorem. Let (M1,M2) be two continuous local
martingales in a common filtration (Ft, t > 0), such that [M1,M2]t = 0 and [M1]t = [M2]t,
almost surely for all t > 0. (Here [M,N ] denotes the covariation of the two continuous local
martingales M and N , and [M ] stands for [M,M ]). We also assume that if At = [M1]t,
then A∞ = ∞ almost surely. Show that if τr = inf{t > 0 : At > r}, then

Br = (M1
τr

,M2
τr

), r > 0,

defines a 2-dimensional Brownian motion in the filtration (Gr)r>0 defined by Gr = Fτr for
all r > 0. [You may use any result from the course provided that it is clearly stated.]

(b) Let (Ω,F , (Ft)t>0, P) be a filtered probability space such that the filtration
(Ft)t>0 is right-continuous and F0 contains all zero probability events. Let (βt, t > 0)
and (θt, t > 0) be two independent (Ft)t>0-Brownian motions in R, and define a process
(Zt, t > 0) with values in the complex plane as follows: let Rt = exp(βt), and let

Zt = Rte
iθt , t > 0.

Let Xt and Yt denote respectively the real and imaginary parts of Zt. Show that X and
Y are continuous local martingales and that

[X]t = [Y ]t and [X,Y ]t = 0

for all t > 0. Show that [X]∞ = ∞ almost surely. [Hint: the recurrence and the strong
Markov property of (βt, t > 0), together with the law of large numbers, may be helpful for
this result.]

(c) Deduce from (a) that there exists (τr, r > 0) such that (Zτr , r > 0) is a two-
dimensional Brownian motion started at z0 = (1, 0) in an appropriate filtration. Use this
to show that Brownian motion in R2 started from z0 almost surely never hits 0 but comes
arbitrarily close to 0 on an unbounded set of times.
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(a) Let M be a continuous local martingale and let Z = E(M), where E(M)t =
exp(Mt − (1/2)[M ]t) denotes the exponential local martingale associated with M .
Show that dZt = ZtdMt. Suppose now that Z and Z ′ are two strictly positive
processes such that Z0 = Z ′

0 and

dZt = Zt dMt ; dZ ′
t = Z ′

t dMt .

By considering ln(Z ′
t)− ln(Zt), show that Z and Z ′ are indistinguishable.

(b) Let P denote the Wiener measure (i.e., the law of a Brownian motion (Xt, t > 0)),
and let Q be a measure which is absolutely continuous with respect to P on Ft for
every t > 0 , where (Ft)t>0 is the filtration generated by X . We denote by Zt the
Radon-Nikodyn derivative of Q with respect to P on Ft: that is,

dQ
dP

∣∣∣
Ft

= Zt .

Show that (Zt, t > 0) is a martingale in (Ft)t>0 . Assume that Zt = h(Xt, t), where
h(x, t) is a given positive C2 function. Deduce that Dth + 1

2Dxx h = 0 , where Dth,
Dtth (resp. Dxh, Dxxh) denote the first and second derivatives of h with respect to
t (resp. x).

(c) Using the same notations as in (b), show that dZt = ZtdMt where M is defined by:

M0 = 0 ; dMt =
Dxh(Xt, t)
h(Xt, t)

dXt .

Deduce from this and the result in (a) that Zt = E(M)t . [You may use without
proof the fact that Z0 = 1 almost surely].

Conclude that the semimartingale decomposition of X under Q is

Xt = Bt +
∫ t

0

Dxh(Xs, s)
h(Xs, s)

ds ,

where B is a Brownian motion. [Hint: You may use Girsanov’s theorem without
proof, provided that you state it clearly and verify the assumptions carefully].
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(a) Let (Bt, t > 0) be a one-dimensional Brownian motion and let Yt = eBt+t/2.
Show that Y solves a certain stochastic differential equation, whose coefficients should be
determined. Does pathwise uniqueness hold for this equation? Using the Dubins-Schwartz
theorem, show that there exists a Brownian motion (βt, t > 0) such that

Yt = 1 + βHt +
∫ t

0

1
Ys

dHs (1)

where Ht =
∫ t
0 e2Bs+sds.

(b) The notations are the same as in (a). Let Jt = inf{s > 0 : Hs > t}. Deduce
from the above that if Xt = YJt, then

Xt = 1 + βt +
∫ t

0

1
Xs

ds. (2)

[Hint: note that HJt = t for all t > 0 and use a change of variable in the integral appearing
in the right-hand side of (??).]

(c) Let (Wt, t > 0) be a Brownian motion in R3 started from W0 = (1, 0, 0), and
let |Wt| denote the Euclidean norm of Wt. Show that |W | is also a solution of (??) and
deduce that limt→∞ |Wt| = ∞ almost surely. [You may assume without proof that there
is uniqueness in distribution for the solutions of (??).]

Show further that
lim
t→∞

log(|Wt|)
log(t)

=
1
2
,

almost surely. Assuming without proof the existence of this limit, explain briefly how you
could have guessed its value using a different method.
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Throughout this question, we fix a probability space (Ω,F , (Ft)t>0, P) satisfying the
usual conditions: the filtration (Ft)t>0 is right-continuous and F0 contains all events of
probability zero.

(a) Let σ, b : R → R be two measurable and locally bounded functions, and suppose
that an adapted continuous stochastic process (Xt, t > 0) is a solution to the stochastic
differential equation:

dXt = σ(Xt)dBt + b(Xt)dt (1)

where (Bt, t > 0) is a one-dimensional (Ft)t>0-Brownian motion. Assume that s : I → R
is a C2 function on an interval I such that

1
2
s′′(x)σ2(x) + s′(x)b(x) = 0, x ∈ I. (2)

Show that Yt = s(Xt∧T ) is a local martingale, where T = inf{t > 0 : Xt /∈ I}. Such a
function s is called a scale function for (??) on I. Deduce that if a < x < b with a, b ∈ I,
and X0 = x almost surely, then

P(Tb < Ta) =
s(x)− s(a)
s(b)− s(a)

,

where for all y ∈ R, Ty = inf{t > 0 : Xt = y}.
(b) Let a > 0 with a 6= 1/2, and assume that X is a positive solution to the

stochastic differential equation

dXt = dBt +
a

Xt
dt. (3)

Show that for all ǫ > 0, s(x) = x−2a+1 is a scale function for (??) on [ǫ,∞). Conclude
that for all x > 0, if X0 = x, then T0 = ∞ almost surely if a > 1/2, while T0 < ∞ almost
surely if a < 1/2.

(c) Assume that a > 1/2. Show that for every ǫ > 0 and for every driving Brownian
motion B, there exists a unique process (Xǫ

t , t > 0) which satisfies (??) for all t < T ǫ
ǫ ,

where for all ǫ > 0, T ǫ
ǫ = inf{t > 0 : Xǫ

t = ǫ}. Show that T ǫ
ǫ is nondecreasing as ǫ → 0, and

let T = limǫ→0 T ǫ
ǫ . Deduce that one can construct a process (Xt, t > 0) which is a solution

of (??) for all t < T . Show that necessarily T = ∞ almost surely. Conclude that in the case
a > 1/2 there exists a strong solution to (??) for every driving Brownian motion B and that
pathwise uniqueness holds.

END OF PAPER
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