UNIVERSITY OF

MATHEMATICAL TRIPOS Part III

Tuesday, 2 June, 2009 1:30 pm to 4:30 pm

PAPER 28

LOCAL FIELDS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

1 (i) State and prove a version of Hensel's Lemma.

(ii) Let $f(x) = x^3 - 3x + 4$. Show that the equation f(x) = 0 has a unique solution in \mathbb{Z}_7 but no solutions in \mathbb{Z}_5 or \mathbb{Z}_3 . Find how many solutions it has in \mathbb{Z}_2 .

(iii) Let $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ be the function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in 2\mathbb{Z}_2\\ -1 & \text{if } x \notin 2\mathbb{Z}_2 \end{cases}$$

Show that f is continuous and compute its Mahler expansion.

2 Let L/K be a finite extension of local fields. Show that L/K is unramified if and only if L = K(x) for some $x \in \mathfrak{o}_L$ whose minimal polynomial g satisfies $g'(x) \neq 0$ (mod \mathfrak{m}_L).

Suppose that L/K is unramified, and M/K is arbitrary. Show that every k_K -homomorphism $k_L \to k_M$ is induced by a unique K-homomorphism $L \to M$. Deduce that L/K is Galois with cyclic Galois group.

Let L/K be a finite unramified extension, and M/K a totally ramified extension, both contained in a fixed algebraic closure of K. Show that the field LM is totally ramified over L.

Find an example of a finite extension N/\mathbb{Q}_p which is not of the form N = LM for an unramified extension L/\mathbb{Q}_p and a totally ramified extension M/\mathbb{Q}_p .

3 Let L/K be a finite extension of local fields. Show that L/K is totally ramified if and only if L = K(x) for some $x \in \mathfrak{o}_L$ whose minimal polynomial is an Eisenstein polynomial, and that in that case x is a uniformiser of L.

Show that if q is a power of p then $\mathbb{Q}_p(\zeta_q)$ is totally ramified. For what other values of n is it the case that $\mathbb{Q}_p(\zeta_n)/\mathbb{Q}_p$ is totally ramified?

If L/K is finite, Galois and totally ramified, define the ramification groups of L/K. Determine them for the extension $\mathbb{Q}_p(\zeta_q)/\mathbb{Q}_p$.

4 (i) Prove that if L/K is an unramified extension of local fields of degree n then $N_{L/K}(L^*) = \{x \in K^* \mid v_K(x) \equiv 0 \mod n\}.$

(ii) State and prove Hilbert's Theorem 90. Deduce that if L/K is a finite unramified extension of local fields with Frobenius $\phi_{L/K}$ then for every $x \in \mathfrak{o}_L^*$ with $N_{L/K}(x) = 1$ there exists $y \in \mathfrak{o}_L^*$ with $\phi_{L/K}(y)/y = x$.

5 Write an essay on the reciprocity map of local class field theory. You should include a definition of the reciprocity map and a statement of its properties, with an outline of some of the proofs.

END OF PAPER