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1 (i) State and prove a version of Hensel’s Lemma.

(ii) Let f(x) = x3 − 3x + 4. Show that the equation f(x) = 0 has a unique solution
in Z7 but no solutions in Z5 or Z3. Find how many solutions it has in Z2.

(iii) Let f : Z2 → Z2 be the function defined by

f(x) =

{
1 if x ∈ 2Z2

−1 if x /∈ 2Z2

Show that f is continuous and compute its Mahler expansion.

2 Let L/K be a finite extension of local fields. Show that L/K is unramified if
and only if L = K(x) for some x ∈ oL whose minimal polynomial g satisfies g′(x) 6≡ 0
(mod mL).

Suppose that L/K is unramified, and M/K is arbitrary. Show that every kK -
homomorphism kL → kM is induced by a unique K-homomorphism L→M . Deduce that
L/K is Galois with cyclic Galois group.

Let L/K be a finite unramified extension, and M/K a totally ramified extension,
both contained in a fixed algebraic closure of K. Show that the field LM is totally ramified
over L.

Find an example of a finite extension N/Qp which is not of the form N = LM for an
unramified extension L/Qp and a totally ramified extension M/Qp.

3 Let L/K be a finite extension of local fields. Show that L/K is totally ramified
if and only if L = K(x) for some x ∈ oL whose minimal polynomial is an Eisenstein
polynomial, and that in that case x is a uniformiser of L.

Show that if q is a power of p then Qp(ζq) is totally ramified. For what other values
of n is it the case that Qp(ζn)/Qp is totally ramified?

If L/K is finite, Galois and totally ramified, define the ramification groups of L/K.
Determine them for the extension Qp(ζq)/Qp.

4 (i) Prove that if L/K is an unramified extension of local fields of degree n then
NL/K(L∗) = {x ∈ K∗ | vK(x) ≡ 0 mod n}.

(ii) State and prove Hilbert’s Theorem 90. Deduce that if L/K is a finite unramified
extension of local fields with Frobenius φL/K then for every x ∈ o∗L with NL/K(x) = 1 there
exists y ∈ o∗L with φL/K(y)/y = x.
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5 Write an essay on the reciprocity map of local class field theory. You should include
a definition of the reciprocity map and a statement of its properties, with an outline of some
of the proofs.

END OF PAPER
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